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Abstract—A dynamically adaptive system (DAS) monitors
itself and its execution environment to assess requirements
satisfaction at run time. Unanticipated environmental condi-
tions may cause sensory inputs that alter the self-assessment
capabilities of a DAS in unpredictable and undesirable ways.
Moreover, it is impossible for a human to know and/or
enumerate all possible combinations of system and environ-
mental conditions that a DAS may encounter. This paper
introduces Loki, an evolutionary computation-based approach
that automatically discovers environmental conditions that
lead to requirements violations and latent behaviors in a
DAS. As such, Loki facilitates the identification of goals with
inadequate obstacle mitigations or insufficient constraints to
prevent unwanted behaviors. We apply Loki to an autonomous
vehicle system that performs adaptive cruise control, lane
keeping, and collision avoidance. Experimental results show
that Loki discovers environmental conditions that obstruct
goals and detects a significantly larger number of different
and unexpected behaviors than randomized search.
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I. INTRODUCTION

A dynamically adaptive system (DAS) must monitor
itself and its execution environment to detect conditions
warranting a reconfiguration. At run time, a DAS analyzes
this monitoring information to determine when and how to
safely reconfigure itself such that it satisfies its requirements.
Unfortunately, unanticipated environmental conditions may
negatively impact the accuracy and reliability of monitor-
ing information, thereby compromising the decision-making
abilities of a DAS. Moreover, it is impossible for a hu-
man to know and/or enumerate all possible combinations
of environmental conditions that a DAS may encounter
throughout its lifetime [1]. As a result, it is important to
explore how environmental conditions impact the behavior
of a DAS before the implementation phase, while there is
greater flexibility for resolving obstacles that prevent the
satisfaction of goals [2]. This paper introduces Loki 1 an
evolutionary computation-based approach for automatically
identifying combinations of environmental conditions that
obstruct goals. Loki can be leveraged to generate suites of
test cases as well as suggest refinements to a goal model.

1In Norse mythology, Loki is the god of mischief and trickery.

Early system requirements and domain assumptions are
often ambiguous and idealized, thus leading to inconsis-
tencies between a system specification and its behavior at
run time [2], [3]. To augment goal models with more com-
prehensive and realistic requirements, Van Lamsweerde and
Letier proposed a set of heuristics, refinement patterns, and
formal techniques for reasoning about obstacles [2]–[4] and
partial goal satisfaction [5]. However, as DASs become more
intertwined with the physical elements, including the envi-
ronment, it becomes increasingly impractical for a human to
exhaustively explore environmental conditions that adversely
impact a DAS [1], [6]. Lutz and Mikulski demonstrated how
testing could discover incomplete requirements and unex-
pected requirements interactions [7]. Recently, evolutionary
algorithms have been applied to generate suites of test
cases that cause a failure in the system under test [8]–[10].
While promising, these approaches often require extending
an evolutionary algorithm with domain-specific objective
functions that evaluate the quality of generated test cases.
As such, these approaches may also converge upon specific
types of failures that satisfy the objective function’s criteria.

This paper introduces Loki, a domain-independent evolu-
tionary computation-based approach for automatically ex-
ploring how uncertainty obstructs goals in a DAS, where
uncertainty refers to the unknown effects of environmental
conditions upon goal satisfaction. Instead of searching for
specific instances of goal obstructions, however, Loki gen-
erates a diverse set of behaviors in a DAS that may lead
to goal obstructions. To achieve this objective, Loki applies
the concept of novelty search [11] to generalize, or collapse,
vast collections of possible behaviors into a small number
of representative behaviors. Searching for novelty enables
Loki to discover both requirements violations and latent
behaviors. While a requirements violation clearly obstructs
a specific set of system goals, latent behaviors manage
to satisfy requirements through unexpected and potentially
undesirable behaviors. The set of environmental conditions
that caused requirements violations and latent behaviors
should be reused to guide the testing process of implemented
systems.

Traditional evolutionary algorithms, such as genetic al-
gorithms [12], are stochastic search-based techniques that
use the process of evolution by natural selection to generate



solutions to complex problems. Typically, this search process
is guided by a domain-specific fitness function that evaluates
the quality of generated solutions. Novelty search [11] is
a type of evolutionary algorithm where the fitness func-
tion is replaced by a domain-independent novelty function
that measures the behavioral difference between solutions.
Specifically, novelty functions reward solutions that are
different from those previously discovered. To this end, Loki
first applies a genetic algorithm to generate configurations
that specify the type, duration, and severity of noise that
is applied to sensors in a DAS. Loki then simulates system
and environmental conditions and applies a set of utility
functions to assess how well the DAS satisfied requirements
at run time [13], [14]. Comparing the differences between
values produced by these utility functions enables Loki to
automatically evaluate the behavior of a DAS in response to
perceived environmental conditions, thereby facilitating the
identification of requirements violations and latent behav-
iors.

We illustrate Loki by applying it to an autonomous in-
telligent vehicle system (IVS) that performs adaptive cruise
control, lane keeping, and collision avoidance. To this end,
we leverage a set of IVS goal models to implement an
IVS prototype in the Webots simulation platform [15].
Experimental results show Loki is able to discover combina-
tions of environmental conditions that lead to requirements
violations and latent behaviors. The remainder of this paper
is organized as follows. Section II provides background
information on goal-oriented requirements engineering and
novelty search. In Section III, we describe and apply Loki to
the IVS application. Next, we present experimental results
in Section IV. Section V provides an overview of related
work. Lastly, we summarize our approach, discuss findings,
and present future directions for this work in Section VI.

II. BACKGROUND

In this section, we provide background information on
goal-oriented requirements engineering and evolutionary
computation, including novelty search.

A. Goal-oriented Requirements Engineering

A goal captures the intentions of a stakeholder on the
system-to-be and its execution environment [16]. Essen-
tially, a goal restricts the states that the system-to-be may
reach during execution. Goals refer either to functional
or non-functional properties, the key distinction being that
a functional goal declares a service that the system-to-
be must provide whereas a non-functional goal imposes
a quality criterion upon the delivery of those services. In
addition, goals may also be classified as hard or soft goals.
While the satisfaction of a hard goal can be assessed in
a clear-cut (yes or no) sense, the satisfaction of a soft
goal cannot be determined precisely because it involves
subjective preferences [16], [17]. As such, hard goals can

be achieved whereas soft goals can be satisficed, or satisfied
to a sufficient degree according to preferences [17].

Functional and non-functional goals may be decomposed
into subgoals through AND/OR refinements [16]. A goal
that has been AND-decomposed is satisfied if all of its
subgoals are satisfied. In contrast, a goal that has been
OR-decomposed is satisfied if at least one of its subgoals
is satisfied. The objective of goal decomposition is to
gradually refine high-level goals into finer-grained goals
that can be assigned to a single system or environmental
agent that is responsible for accomplishing the goal. Goals
under the responsibility of a single agent in the system-to-
be are requirements, and those under the responsibility of
a single environmental agent are expectations. Goals can
also be associated with specific obstacles that are conditions
that prevent or obstruct the satisfaction of the goal itself.
An obstacle mitigation is a necessary precondition for the
respective goal to be achieved [2].

B. Evolutionary Computation and Novelty Search

Evolutionary computation is a stochastic search-based
technique that applies the concept of natural selection as
a heuristic to optimize solutions to complex problems. In
general, evolutionary computation approaches, such as ge-
netic algorithms [12], comprise a population, or collection,
of genomes, where each genome encodes, or represents,
a solution. For example, it is common for a genome
in a genetic algorithm to comprise a vector where each
cell represents some dimension of a solution. Evolutionary
computation approaches typically generate new solutions
by applying evaluation, selection, crossover, and mutation
operators. Specifically, the fitness of a genome is evaluated
by applying a fitness function that maps each genome to
a scalar value proportional to its quality. This fitness value
is then used to select the best genomes in the population
for further exploration. While crossover exchanges parts of
existing genomes in the population to form new solutions,
mutation randomly modifies a genome. These processes are
repeated until either a “good-enough” solution is found,
or the maximum number of generations or iterations are
exhausted. Typically, the genome with the highest fitness
value is returned as the solution.

Novelty search is a search heuristic developed by Lehman
and Stanley [11] to prevent evolutionary computation ap-
proaches from becoming “trapped” in deceptive and sub-
optimal areas of the solution space. To achieve this ob-
jective, novelty search replaces the fitness function of an
evolutionary computation approach with a novelty function
that comprises a distance metric, such as Euclidean distance.
Novelty search applies this novelty function to calculate the
distance between solutions in the population and a novelty
archive of previously stored solutions. The novelty of a solu-
tion is computed by calculating the mean distance between
a solution and its k-nearest solutions, where k is usually



determined empirically. Moreover, if the novelty value of a
solution is above some threshold, then the solution is added
to the novelty archive to track which areas of the solution
space have already been explored. Rewarding solutions in
sparse areas of the solution space enables novelty search to
discover new and distinguishable solutions.

III. APPROACH

This section describes how Loki generates environmental
conditions to produce different behaviors in a DAS. First, we
present an overview of Loki and state its assumptions, inputs,
and outputs. We then introduce the intelligent vehicle system
(IVS) application that is used throughout the remainder
of this paper to illustrate Loki, list its requirements, and
describe its corresponding goal model. Next, we describe
how to manually derive utility functions for assessing the
satisfaction of requirements at run time. Lastly, we describe
how to configure Loki to search for different behaviors of a
DAS.

A. Overview of Loki

Loki explores the behaviors of a DAS in response to
different combinations of environmental conditions in order
to facilitate the task of identifying missing or inadequate
obstacle mitigations and goals that could be further con-
strained. The data flow diagram in Figure 1 provides an
overview of Loki. For this work, we assume a requirements
engineer has already constructed a KAOS goal model [16],
[18] and a simulation-based prototype that provides an
executable specification of the system-to-be. Given these
inputs, a requirements engineer (1) manually derives utility
functions to assess requirements satisfaction at run time.
These utility functions, along with an object model that
specifies system and environmental agents, are used to (2)
configure the simulation and novelty search algorithm.
Next, (3) the novelty search algorithm is applied to ex-
ecute the simulations, assess requirements satisfaction, and
measure the distances between discovered solutions. Lastly,
the observed behaviors, and the environmental conditions
that caused such behaviors, are (4) analyzed to revise the
current goal model.

B. Application Description

An intelligent vehicle system (IVS) provides autonomous
vehicle control not only as a convenience to drivers, but also
to ensure the safe and efficient transportation of passengers
across roadways. To this end, an IVS must perform adap-
tive cruise control (ACC) and lane keeping while avoiding
collisions. ACC commands the vehicle’s engine to maintain
a desired speed that depends upon the presence of other
vehicles in front of the IVS. Lane keeping, on the other
hand, detects roadway markings and commands the vehicle’s
steering mechanisms to maintain the vehicle within the
center of the driving lane.
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Figure 1. Data flow diagram describing the Loki approach.

For this work, we extended the implementation of a
generic IVS vehicle provided with the Webots simulation
platform [15]. As Figure 2 illustrates, the IVS is equipped
with a monitoring infrastructure that supports ACC, lane
keeping, and collision avoidance. The default IVS model
implemented in Webots comprises a GPS unit to compute the
position and speed of the IVS, an accelerometer to determine
the acceleration and deceleration rates of the vehicle, and a
camera for detecting lane markings and obstacles on the
road. In addition to these devices, we also added a compass
to compute the orientation of the IVS, a gyroscope to detect
abrupt changes in vehicle speed or heading, three additional
cameras to monitor lane boundaries and obstacles, and ten
laser and sonar-based distance sensors to measure distance
to obstacles around the IVS. For the remainder of this paper,
we use the term IVS to refer to the extended IVS comprising
the extra sensors.

Lead 
Vehicle

IVS

Coasting 

Zone

Minimum Safe 

Distance

Cameras Distance Sensors

Figure 2. IVS configuration and operational environment.

For the IVS application, we identified the following
invariants:

R1: The system shall maintain a safe minimum distance
between the IVS and other vehicles on the road.
R2: The system shall maintain the vehicle within the lane
boundaries.



In addition to these invariants, we also identified the
following non-invariant requirements:

R3: The system shall provide automated speed adjust-
ments to achieve vehicle speed equal to desired speed.
R4: The system shall minimize abrupt changes in vehicle
heading and vehicle speed.

The KAOS goal model in Figure 3 further elaborates the
ACC goals and their corresponding refinements into fine-
grained requirements and expectations. In particular, ACC
must always maintain a minimum safe distance (as illustrated
in Figure 2) between the IVS and other vehicles on the
road. To achieve this high-level goal, ACC must achieve
a desired speed that depends upon both the vehicle’s current
speed and the measured distance to vehicles in front of the
IVS. As such, the ACC must first compute the vehicle’s
current speed and detect the presence of nearby vehicles.
Two OR-refinements exist for computing the vehicle’s speed
as well as for measuring the distance between the IVS and
nearby vehicles, where each branch differs in the set of
agents assigned to satisfy the corresponding requirements
and expectations. After computing the vehicle’s speed and
distance to nearby vehicles, the IVS issues commands to
a speed controller to adjust its current speed as necessary
while the IVS is in the coasting zone. We elide the lane
keeping goal model due to space constraints.

C. Deriving Utility Functions

Recently, utility functions have been applied for self-
assessment purposes in DASs. For example, Valeto et al.
applied utility functions to determine if a DAS should self-
reconfigure to improve service delivery at run time [14].
Similarly, Garlan et al. [13] applied utility functions to
select architectural reconfigurations that best satisfied non-
functional architectural constraints. In the same spirit, Loki
uses a set of utility functions to assess how well a DAS
satisfies its requirements at run time. Specifically, Loki uses
this information as part of the novelty search distance metric.
For this work, we manually derive a set of utility functions
by applying different heuristics, such as those proposed by
Letier and van Lamsweerde for deriving objective functions
and quality variables when reasoning about partial goal
satisfaction [5].

Example. Consider the following utility function for the
two goals in Figure 3 associated with achieving a safe speed:

U(ss, vs) = 1 − {min(
|ss − vs|

ss
,1)}

where ss and vs refer to the vehicle’s safe speed and current
speed, respectively. This utility function returns values close
to 1 as the vehicle’s speed approaches the safe speed. If the
vehicle’s speed diverges from the safe speed, then the utility
function returns values that tend toward 0 in proportion to
the size of the divergence. To derive this utility function,
we identified the environmental property and its constraint

as defined in the goal “Achieve[VehicleSpeed equal to Safe-
Speed” in Figure 3. In this particular goal, VehicleSpeed is
the environmental property that can be measured through the
IVS’s sensors, and SafeSpeed is the constraint that imposes
a target value or threshold that the IVS must achieve. Safe
speed is computed as follows:

SafeSpeed =
DistLeadVehicle

2.5secs
where DistLeadVehicle is the distance between the IVS and
the Lead Vehicle. As such, this safe speed provides the IVS
with 2.5 seconds of reaction time, as required by domain
standards (i.e., domain knowledge, assumptions, and safety
regulations).

D. Generating Environmental Conditions

Loki combines a genetic algorithm [12] with novelty
search [11] to explore the impact of uncertainty upon the
behavior of a DAS. As Figure 4 illustrates, each genome
in the genetic algorithm comprises a vector whose length
is equal to the number of sensors in the DAS’s monitoring
infrastructure. Furthermore, each sensor entry specifies the
type, duration, and severity of environmental uncertainty
that will be applied throughout the simulation. For this
work, we support four types of environmental uncertainty
that include static, periodic, and sporadic noise, as well as
sensor failure. In addition, periodic and sporadic noise are
applied to sensors for the duration specified in the time
period parameter. The severity or degree of noise applied to
each sensor, expressed as a floating-point value, is generated
within a range of possible values for the given sensor, which
is extracted from the object model (omitted due to space
constraints). For example, the encoding shown in Figure 4
indicates that noise will be periodically applied to the IVS’s
top-right camera (cTR) for a duration of 20 simulation time
steps and will affect approximately 16% of the image.

Genome:

Periodic 20 0.16

Type Period Severity

Sensors:

Configuration

cTR ...

Figure 4. Example genome that specifies sensor noise configuration.

E. Simulation Configuration

Loki extracts the noise specification from the encoded
genome (see Figure 4), uses it to configure the monitoring
infrastructure of the DAS, and then executes the simulation.
The simulation consists of two components. For the first
component, the DAS probes its sensors to monitor its
execution environment (e.g., detection of target vehicle and
its speed); here, the sensor values are detecting simulator-
generated random real-world conditions for a given scenario.
Loki intercepts this monitoring information, which does not
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Figure 3. KAOS goal model specifying the goal refinements for adaptive cruise control.

contain “artificially”-inserted noise, before the DAS may
process it. Instead, Loki instantiates the previously defined
set of utility functions with this monitoring information to
compute a set of “real” utility values. Each real utility value
reflects how well the DAS satisfied one of its requirements
at a specific point in time during the simulation. Note that
real utility values differ between simulations depending on
the random behavior generated by the simulator for the IVS
(e.g., different distances to the target vehicle). These real
utility values are stored in a vector of real utility values for
further analysis once the simulation is complete.

For the second component, Loki applies noise to the
raw sensor values that were intercepted from the DAS’s
monitoring infrastructure. Specifically, Loki substitutes the
original monitoring values with noisy monitoring values that
are intended to capture adverse environmental conditions,
such as rain occluding the camera images, interference with
the GPS signal, faulty distance sensor, etc. The DAS then
instantiates the same set of utility functions with the noisy
monitoring values to compute a set of “perceived” utility
values. Each perceived utility value reflects the DAS’s self-
assessment of requirements satisfaction based on the noisy
monitoring information, where adaptive reconfiguration de-
cisions are made based on how well the requirements are

being satisfied (or even violated). In this manner, the DAS
performs decision-making based solely on noisy monitoring
data. Note that perceived utility values differ between simu-
lations depending on environmental conditions experienced
by the IVS and how these affect the IVS’s assessment
of requirements satisfaction. Lastly, these perceived utility
values are stored in a vector of perceived utility values for
further analysis once the simulation is complete.

F. Novelty Computation

After the simulation completes, Loki calculates the dis-
tance between the utility values of each genome in the
population and novelty archive. To compute the distance
between the utility values of two genomes, Loki first matches
the corresponding vectors of utility values. That is, the
distance between real (perceived) utility vectors of a partic-
ular genome are evaluated only against the real (perceived)
utility vectors of another genome. Loki then calculates the
Manhattan distance [19] between each utility value in the
vector. While a large divergence between real utility values
implies two considerably different behaviors of a DAS, a
large divergence between perceived utility values implies
two considerably different self-assessments of requirements
satisfaction by the DAS. Loki sums the distances between



each pair of vectors and assigns this value as overall the
distance between the two genomes.

Loki then ranks the distances between each genome in
the population in increasing order, and applies the following
novelty metric to calculate the novelty value, ρ(x), of each
genome:

ρ(x) =
1
k

k∑
i=0

dist(x, µi)

where k (determined empirically) is the number of nearest
neighbors that will be compared, x is the genome whose
fitness is being assigned, µi is the ith neighbor of x, and
dist is a function that measures the distance between x and
its neighbor. Moreover, genomes with the top 10% fitness
values in the population are added to the novelty archive at
each iteration or generation of the evolutionary algorithm.
Once the evolutionary algorithm terminates, genomes in the
novelty archive are returned as the set of environmental
conditions that produced the most distinct set of behaviors
in the DAS. As such, the novelty archive itself serves as
a set of test cases for ensuring undesirable behaviors have
been resolved.

IV. EXPERIMENTAL RESULTS

In this section, we apply Loki to the IVS application. First,
we describe the simulation scenario. We then present the
experimental setup for conducting our evaluations. Next,
we present and analyze experimental results. Lastly, we
present a comparison between Loki and a randomized search
algorithm used as a baseline.

A. Simulation Scenario

For this study, the simulation scenario comprises two
autonomous vehicles, an IVS and a Lead Vehicle. Initially,
the IVS is positioned 900 meters behind the Lead Vehicle in
the same driving lane. Both vehicles begin to accelerate at
the same time. Specifically, the Lead Vehicle accelerates until
it achieves a desired speed of 35 km/h. The IVS, however,
continues to accelerate until it achieves a desired speed of 55
km/h. As the IVS approaches the Lead Vehicle from behind,
its sensors detect the obstacle and the IVS reconfigures its
operational model to achieve and maintain a safe speed to
avoid a potential collision. This safe speed prevents the IVS
from crossing into the safe distance zone (see Figure 2).
Shortly thereafter, the Lead Vehicle gradually accelerates
until it reaches its new desired speed of 65 km/h, thus
increasing its distance from the IVS and enabling the IVS
to accelerate, once more, to its desired speed of 55 km/h.

Throughout this experiment, the same scenario is replayed
in each simulation. However, different environmental con-
ditions are applied in each simulation as specified by the
sensor configurations encoded in the genomes that the ge-
netic algorithm generates. Note that no sensor is considered
to be a single point of failure in this scenario. That is, even

after applying the maximum permissible amount of noise to
each sensor independently, the IVS still continues to satisfy
its requirements at run time. Therefore, the objective of this
experiment is to discover sets of different latent behaviors
and requirements violations in response to different combi-
nations of environmental conditions.

B. Experimental Setup

Table I specifies the configuration of the genetic algorithm
and novelty search for this experiment. With a population
size of one hundred genomes, and a maximum number of ten
generations, this particular configuration evaluates exactly
1000 different combinations of environmental conditions. A
Manhattan distance metric is used to compute the difference
between the utility vectors associated with genomes in
the population and novelty archive. After ranking these
distances, the novelty of a genome is assigned by computing
the mean distance to the seven nearest genomes in the
solution space. At the end of each generation, genomes with
a novelty value in the top 10% are added to the novelty
archive. Lastly, we conduct 25 trials of this experiment, each
with a different seed value that is stored to ensure that results
are reproducible.

Table I
GENETIC ALGORITHM AND NOVELTY SEARCH CONFIGURATIONS.

Parameter Description Value
Maximum number of generations 10
Population size 100
Mutation rate 0.1
Crossover rate 0.6
Distance metric Manhattan distance
k-nearest 7
Archive threshold Top 10%

C. Discovered Behaviors

In general, Loki consistently discovered different sets of
behaviors. Specifically, out of 1000 evaluations that were
performed in each trial, Loki discovered a mean of 142.42
different behaviors in response to different combinations of
environmental conditions. In addition, for each trial, Loki dis-
covered a minimum and maximum of 77 and 201 different
behaviors, respectively. These results suggest that 15% of the
genomes examined by Loki represented different behaviors.
Within this set of behaviors, approximately 7.7% of them
involvd a requirements violation. Upon closer inspection,
every behavior that violated a requirement suffered from a
“perception-reality” gap. That is, environmental conditions
negatively impacted the monitoring capabilities of the IVS
to the extent that it failed to detect conditions that would
indicate a requirement violation. The other 92.3% of behav-
iors satisfied requirements at run time, though some of them
exhibited latent behaviors. These results confirm the crucial
role that environmental uncertainty plays in determining
whether a DAS is able to satisfy its requirements or not.



Requirements Violations. We analyzed the set of be-
haviors that violated requirements in order to determine
which combinations of environmental conditions had the
most impact upon goal satisfaction. In particular, the most
detrimental combinations of environmental conditions in-
volved mutliple failures of sensors or environmental agents.
Although slightly less severe, sensor noise was also detri-
mental to goal satisfaction. In both cases, a requirements
violation occurred because goals were either unfulfilled or
their computations unreliable, thereby preventing the IVS
from correctly interpreting gathered monitoring data. In
contrast, results suggest that periodic and sporadic noise
were not as detrimental to goal satisfaction as these had
to occur at very precise points in time (i.e., when the IVS
is making a key decision) in order to obstruct a goal. Based
on this information, a requirements engineer may begin to
prioritize the identification and mitigation of obstacles such
that sensor failures and sensor noise problems are addressed
first.

Different environmental conditions affected three key
agents the most: the cameras, distance sensors, and GPS.
Of these three agents, the GPS was involved in a significant
number of requirements violations. Specifically, the data
produced by the GPS was susceptible to system and envi-
ronmental noise, the slightest of which produced significant
errors when computing the IVS’s current speed. While the
IVS is able to satisfy its requirements when uncertainty is
limited to the GPS agent alone, if other agents in addition to
the GPS failed or suffered from uncertainty, then the IVS no
longer satisfied its requirements. This observation captures
the dependency between the navigation component and the
tracking component. As such, the goal “Achieve[Estimate
Accurate SafeSpeed]” in Figure 3 was unsatisfied in the
majority of these cases, thus leading to a requirements
violation by failing to maintain a safe distance between the
IVS and the Lead Vehicle.

To illustrate the range of different behaviors discovered by
Loki, we now examine two different behaviors that caused a
requirements violation. In both cases, the IVS was unable
to accurately estimate the coasting zone distance due to
moderate levels of sensor noise across the GPS and distance
sensor agents. As a result, in the first behavior, the IVS
failed to decelerate in time, crossed into the safe distance
zone momentarily, and then, by further reducing its speed,
re-entered the coasting zone. While the IVS and the Lead
Vehicle did not collide as a result of this behavior, the “Main-
tain[SafeDistance]” requirement was ultimately violated. In
the second behavior, the IVS also suffered from the failures
of a camera and two distance sensor agents. However, in
contrast to the previous example, the IVS now failed to
decelerate in time, crossed into the safe distance zone,
collided with the Lead Vehicle, departed from its driving
lane temporarily because of the collision, and then continued
to collide with the Lead Vehicle in order to re-enter the

driving lane (in an attempt to satisfy the lane keeping goal),
eventually pushing the Lead Vehicle off the road. While
the first behavior suggests that a new mitigation should
be inserted into the goal model to resolve obstacles that
affect the accuracy of speed estimates, the second behavior
suggests a subtle and undesirable requirements interaction
between the ACC and lane keeping features.

Careful examination of the interactions between agents
and goals involved in the different requirements violations
discovered by Loki suggest that the root of this failure
cascade was the inaccurate computation of the IVS’s current
velocity. Specifically, although the IVS can choose from
two different OR-refinements to estimate its current velocity,
if both branches are affected by detrimental environmental
conditions, then the obstacle mitigation is insufficient. In
either case, the current velocity estimate is also used to
compute the safe speed and safe distance values in the IVS.
While these inaccuracies may be independently insignificant,
when combined they tended to accumulate and propagate
across goals, thereby negatively impacting the decision-
making capabilities of the IVS. More specifically, these
behaviors indicate that the IVS was unable to decelerate
in a timely manner, crossed into the safe distance zone,
and violated one or more requirements, often resulting in
a collision.

Unwanted Latent Behaviors. Most of the different be-
haviors discovered by Loki satisfied requirements. However,
in several instances, Loki also discovered latent behaviors
that should be disallowed. For example, in one latent be-
havior, the IVS decelerated and achieved its safe speed
without crossing into the safe distance zone. However, the
IVS then began to abruptly accelerate and decelerate in order
to maintain its safe speed (i.e., causing a jerking motion). In
a different latent behavior, the IVS abruptly decelerated just
before crossing into the safe distance zone. However, instead
of achieving its safe speed as in the previous behavior,
the IVS continued decelerating almost to a complete stop
(i.e., stopping in the middle of a highway) before eventually
accelerating. In both cases, the latent behaviors discovered
by Loki need to be prevented as they negatively impact
passenger comfort and may cause a collision with other
vehicles trailing the IVS, respectively.

D. Comparison to Randomized Search

We now reuse the environmental conditions and resulting
utility vectors from the previous experiment in order to
compare Loki with a randomized search algorithm that serves
as a control.

Experimental Setup. This experiment leverages the same
simulation scenario as in the previous experiment, but we
replace the novelty search algorithm with a randomized
search. We extend the previous experiment by randomly
generating 1000 different sensor configurations that specify
the type, duration, and severity of noise applied to each



sensor in the IVS during a simulation. We then execute
one simulation for each sensor configuration in order to
produce the corresponding vectors of utility values. Since
each simulation is executed sequentially and independently,
the randomized search algorithm has no knowledge about
what areas of the solution space have already been explored.
Once all simulations complete, we compute the differences
between the utility values for each sensor configuration (i.e.,
the novelty value) by using the same novelty metric as in
the previous experiment (i.e., k-nearest neighbors).

Comparing Novelty Values. Once we computed the
novelty values of each randomly-generated sensor config-
uration, we compared them with the results generated by
Loki from the previous experiment. Intuitively, the approach
that produces a larger set of novelty values has covered a
larger portion of the solution space.

In general, randomized search also discovered system and
environmental conditions that produced requirements viola-
tions. Out of 1000 evaluations per trial, randomized search
discovered a mean of 194.1 behaviors that involved a re-
quirements violation. These results confirm that randomized
search is a valuable tool for discovering test cases that trigger
failures in the system-to-be. While it seems randomized
search discovered more behaviors that violated requirements,
upon closer inspection, most of the randomly-discovered
behaviors were similar to each other. In particular, we found
statistically significant differences in the novelty values
between Loki and randomized search (Wilcoxon rank sum
test, p < 0.001, Loki mean = 14.7, randomized search mean
= 12.3). Moreover, Loki was able to consistently find larger
novelty values than randomized search. For instance, in
every trial, Loki discovered several behaviors with novelty
values greater than 40, which are considerably larger than
the mean values obtained by both approaches. Often, the
magnitude of the novelty value correlates with the severity
of latent behaviors and requirements violations.

V. RELATED WORK

This section presents related work in obstacle analysis,
requirements monitoring, and test case generation. First, we
describe approaches for mitigating obstacles in goal-oriented
requirements engineering. We then present related work in
self-assessment within the context of a DAS. Lastly, we
discuss approaches for generating test cases that can discover
incomplete and inconsistent requirements.

A. Obstacle Analysis

Obstacle analysis enables the identification and resolution
of conditions that can otherwise obstruct the satisfaction of
a goal at run time. Van Lamsweerde and Letier proposed a
set of heuristics, refinement patterns, and formal techniques
for systematically identifying and mitigating obstacles from
goal specifications [2], [3]. The authors also present a
library of generic refinement patterns grounded within a

formalized framework that can be applied to gradually
refine and elaborate root goal negations into fine-grained
obstacles. Once identified, several obstacle mitigations are
possible. In a slightly different approach, Letier and Van
Lamsweerde also proposed a probabilistic framework for
specifying partial degrees of goal satisfaction [5]. In this
approach, non-functional goals are specified in terms of
probabilities, which can be obtained directly from stake-
holders, derived from operational statistics, and so forth.
The satisfaction of each non-functional goal is evaluated
with application-specific refinement equations or objective
functions. In addition, several heuristics are proposed for
deriving objective functions from system functional goals.

Although it is ideal to identify and mitigate every pos-
sible obstacle that might obstruct goals in the system-to-
be, achieving this objective for many domains may be
practically infeasible given the large space of potential
obstacles that might arise at run time. Loki both complements
and supports the obstacle analysis approaches proposed by
Van Lamsweerde and Letier [2], [3], [5]. Specifically, Loki
discovers system and environmental conditions that produce
latent behaviors and requirements violations. As such, Loki
may be applied to augment the set of goals, obstacles, and
obstacle mitigations identified through heuristics, refinement
patterns, and formal techniques [2], [3]. Additionally, Loki
may also be applied to validate and/or refine the probabilistic
values assigned to each goal [5].

B. Requirements Monitoring and Self-Assessment

Requirements monitoring determines how well a system
satisfies its requirements at run time, and detects conditions
conducive to a requirements violation in order to mitigate
them as early as possible. Fickas [20], Feather [21], and
Robinson [22] developed requirements monitoring frame-
works to support the instrumentation, gathering, and analysis
of monitoring data. In the same spirit, utility functions
have been used as light-weight approaches to perform self-
assessment [14] and select which reconfiguration to apply
at run time [13]. Within the context of a DAS, these utility
functions accept monitoring data as input, apply domain-
specific objective functions to process the data, and output a
value within the range [0, 1] that is proportional to how well
the system satisfies functional and non-functional require-
ments. Although Loki applies utility functions to determine
if a DAS satisfies functional requirements under different
system and environmental conditions, it can also lever-
age traditional requirements monitoring approaches such as
those developed by Feather, Fickas, and Robinson. While
we manually derive the utility functions for this work, Loki
may also benefit from automated utility function derivation
techniques [14].



C. Test Case Generation

Lutz and Mikulski identified several mechanisms for
discovering and, if necessary, resolving requirements during
the software testing phase [7]. The objective of these mech-
anisms is to resolve incomplete requirements, unexpected
requirements interactions, and requirements confusions by
testers. Loki supports these mechanisms for requirements
discovery and resolution as it provides an automated ap-
proach for discovering incomplete requirements in the form
of missing or inadequate obstacle mitigations and insuffi-
ciently constrained goals. Loki can also be used to identify
unexpected requirements interactions in the form of latent
behaviors that may be conducive to goal obstructions. In
addition, research on software testing has focused, among
other things, on optimizing test inputs such that the software
or model is exercised as much as possible. For instance,
Ledru et al. [23] proposed an approach that applies distance
metrics to prioritize test cases that are most different from
those already examined. Their proposed approach, however,
explores test cases at the application code level, whereas Loki
explores the impact of system and environmental conditions
at the goal and requirements levels.

Recently, genetic algorithms have been applied to gen-
erate suites of test cases [8]–[10]. For instance, Nguyen et
al. [10] proposed an approach for testing the behavior of
an autonomous agent in response to, among other things,
environmental conditions generated by a genetic algorithm.
Nonetheless, to leverage these approaches, developers must
extend the genetic algorithm with domain-specific functions
to evaluate the quality of generated test cases. Furthermore,
the fitness functions in these traditional genetic algorithm-
based approaches are often defined to search for specific
types of failures, thus making them less able to detect
unwanted latent behaviors that the system also satisfies. In
contrast, developers need not redefine the novelty function
in order to use Loki across different application domains.
Similarly, through novelty search, Loki is able to generate a
more comprehensive suite of latent behaviors and require-
ments violations.

VI. CONCLUSIONS

In this paper we presented Loki, an evolutionary
computation-based approach for automatically discovering
environmental conditions that produce unexpected behaviors
in a DAS, including goal obstructions and requirements
violations. Loki applies novelty search to reduce the entire
set of examined behaviors that a DAS might exhibit into a
comprehensive set of different behaviors. We presented sev-
eral examples of requirements violations and latent behav-
iors automatically discovered by Loki. Experimental results
demonstrate that Loki is able to find a significantly larger
number of different and unexpected behaviors in response
to environmental conditions when compared to randomized
testing. The set of environmental conditions that led to these

undesirable behaviors can be leveraged not only to identify
missing or inadequate obstacle mitigations in a goal model,
but also as test cases when revising the implementation of
the DAS.

A requirements engineer may apply Loki in several ways,
depending on the kinds of behaviors being explored. In
particular, the k-nearest parameter in the novelty search
algorithm directly affects the fitness value computation by
controlling how many other behaviors are considered when
establishing clusters of different behaviors. As a result,
setting low (high) values for the k-nearest parameter in
novelty search causes Loki to discover a larger (smaller)
number of different behaviors. In this manner, a require-
ments engineer who wishes to initially explore a small
subset of behaviors might prefer a larger k-nearest parameter
in order to generalize solutions. Once a few interesting
behaviors are identified, the requirements engineer might
wish to explore a broader set of behaviors by reducing the
k-nearest value. Approaches such as the one proposed by
Nguyen et al. [10] might be leveraged at this point to focus
on refining a specific behavior of interest.

Future directions for this work include applying Loki to
explore how environmental conditions may affect RELAXed
goals [6]. In addition, we also plan to explore how Loki
can be used with the partial goal satisfaction framework by
Letier and Van Lamsweerde [5] in order to refine initial
probabilities assigned to goals.
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