
An Aspect-Oriented Approach for Implementing
Evolutionary Computation Applications ∗

Andres J. Ramirez, Adam C. Jensen, and Betty H.C. Cheng
Michigan State University

Department of Computer Science and Engineering
3115 Engineering Building

East Lansing, MI 48823
{ramir105, acj, chengb}@cse.msu.edu

ABSTRACT
Object-oriented frameworks support design and code reuse
for specific application domains. To facilitate the develop-
ment of evolutionary computation (EC) programs, such as
genetic algorithms, developers often extend and customize
EC frameworks with application code that defines the EC
problem being solved. The application code, however, cross-
cuts the EC framework whenever candidate solutions are
encoded, decoded, evaluated, and output. A change in the
application logic, such as adding a parameter to the problem
being solved, requires additional changes across code that
extends the framework. This paper presents Arachne, an
aspect-oriented approach for developing EC programs that
extracts the crosscutting concerns of an application code into
aspects that can be woven into the EC framework at compile
time. To facilitate applying Arachne, we implemented a pro-
totype tool to support the automatic generation of aspect
code for two widely used EC frameworks, JGAP and ECJ.
We demonstrate Arachne by applying it to re-engineer EC
benchmark programs and an industry-provided problem.

Categories and Subject Descriptors
D.2.2 [Software]: Software Engineering - Design Tools and
Techniques

General Terms
Design

∗This work has been supported in part by NSF grants
CCF-0541131, IIP-0700329, CCF-0750787, CCF-0820220,
DBI-0939454, CNS-0854931, Army Research Office grant
W911NF-08-1-0495, Ford Motor Company, and a Quality
Fund Program grant from Michigan State University. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation, Army, Ford, or other research sponsors.

Keywords
Aspect-orientation, evolutionary algorithm, genetic algorithm

1. INTRODUCTION
Evolutionary computation (EC) is a family of stochastic

search-based techniques, such as a genetic algorithm [10],
that is often applied to solve complex optimization problems
in a wide range of domains, including software engineer-
ing [8, 11, 24]. An object-oriented framework [6] provides a
reusable set of cooperating classes that can be extended and
customized for a particular type of software. As a result, de-
velopers often leverage EC frameworks [5, 18, 20] to facilitate
the development of EC programs. This framework-oriented
approach for EC-based programs, however, scatters and en-
tangles the application code (e.g., how a candidate solu-
tion is represented within a framework’s classes) throughout
multiple extension points in the EC framework. The cross-
cutting application code, in turn, complicates maintenance
tasks, increases the potential for system inconsistencies if
changes are not properly propagated, and hinders the reuse
of application code across different EC frameworks and ap-
proaches. This paper presents Arachne, an aspect-oriented
programming (AOP) [14] approach for developing EC pro-
grams that extracts the crosscutting concerns of application
code into aspects that can be woven into the EC framework
at compile time. After applying Arachne, the resulting EC
program has better modularity, becomes easier to maintain,
and facilitates the reuse of application code across different
EC programs and frameworks.

To use an EC framework, developers must first determine
how to encode, or map, the general structure of a candi-
date solution to classes provided by the EC framework (e.g.,
a vector of integers). Developers must also determine how
to measure the quality, or fitness, of a candidate solution to
guide the search process towards better areas of the solution
space. In this manner, a candidate solution’s encoding and
its semantics permeate multiple classes and extension points
in an EC framework. As a result, developers must scatter
and entangle application code throughout various extension
points where the EC framework maps an encoded solution
to the application domain and vice-versa. This approach
implies that a single change in the underlying problem or
structure of a candidate solution (e.g., adding an optimiza-
tion parameter) requires propagating corresponding changes
to the encoding, decoding, evaluation, and output modules
of the EC framework. Given the tight coupling between a so-
lution and its representation and semantics, it is difficult to

build black-box frameworks that hide the internal details of
the frameworks’ design and implementation. Furthermore,
the dependency between these modules increases the diffi-
culty of preserving system consistency and complicates the
reuse of application code in other EC systems.

This paper introduces Arachne, an aspect-oriented approach
for developing EC programs without requiring developers
to scatter and entangle application code across various EC
framework extension points. Specifically, Arachne uses as-
pects to encapsulate application code that maps candidate
solutions to either a representation within the EC framework
or back to the problem domain, thereby separating the ap-
plication code from the EC framework until compile time.
In this manner, Arachne hides the internal details about an
EC framework’s design and implementation by encapsulat-
ing the locations, or pointcuts, where application code must
be inserted into the EC framework. To reduce the efforts re-
quired with identifying pointcuts in a target EC framework,
we developed a prototype tool that supports the genera-
tion of aspect code for several widely-used EC frameworks.
Leveraging Arachne in the development of an EC program
also facilitates maintenance tasks while preserving system
consistency by automatically propagating modifications in
the application code to their corresponding EC framework
extension points. Lastly, by separating the application code
from the EC framework, Arachne facilitates the migration
of an EC program across different EC frameworks. Such a
migration, which is often a time-consuming task, may be
useful for developers who are changing frameworks either to
obtain different EC computation support [5] or to compare
the relative performance of different frameworks.

Arachne supports a systematic process to separate the ap-
plication code from the EC framework at the implementa-
tion level, as well as to automatically weave them together
at compile time. First, in the Arachne approach, a solu-
tion comprises not only the application code that defines
the optimization problem, but also the evaluation criteria
that determines the quality of a candidate solution. Next,
Arachne introduces aspects to map a solution either to a
set of classes in the EC framework or back to the problem
domain. Each aspect specifies the extension points in the
target EC framework where the corresponding application
code will be inserted during compilation. Essentially, these
Encoding and Decoding aspects enable Arachne to redirect
the EC framework’s evaluation and output of candidate solu-
tions to the application code. Then an aspect weaver [9, 14]
automatically compiles the application code and EC frame-
work together, thus producing a self-contained executable
program.

We conducted several experiments to assess the efficacy
of applying AOP to separate the application code from the
EC framework. First, we applied Arachne to re-engineer
three EC application benchmarks provided with two widely
used EC frameworks, ECJ [18] and JGAP [20]. We then
re-implemented Plato [21], an EC program developed for an
industry-provided problem that autonomously reconfigures
networks of remote data mirrors. For each experiment, we
compare the resulting aspect-oriented system with its tra-
ditional object-oriented counterpart in terms of code reuse,
maintenance, and modularization, leveraging the Software
Engineering metrics suite by Chidamber et al. [4] and AOP
metrics suite [3] where applicable. Experimental results
suggest AOP is beneficial in modularizing EC programs,

thus simplifying maintenance tasks, preserving system con-
sistency, and facilitating the reuse of application code across
different EC frameworks. The remainder of this paper is or-
ganized as follows. In Section 2 we review background and
related work in evolutionary computation, object-oriented
frameworks, and aspect-oriented programming. We then
present the Arachne approach in Section 3, followed by the
set of experiments performed for this study in Section 4.
Lastly, we summarize our work, discuss our findings, and
present future directions for this work in Section 5.

2. BACKGROUND & RELATED WORK
In addition to related work, this section presents three

topics fundamental to this work: evolutionary-computation,
object-oriented frameworks, and aspect-oriented program-
ming.

2.1 Background
In this subsection, we first describe evolutionary compu-

tation and how it searches for optimal or near-optimal so-
lutions. Then we introduce object-oriented frameworks and
some of the challenges in designing and reusing EC frame-
works in particular. Lastly, we describe how AOP separates
crosscutting concerns at the implementation level.

Evolutionary Computation. Evolutionary approaches,
such as genetic algorithms (GAs) [10], are stochastic search-
based techniques for solving complex optimization problems.
Evolutionary computation (EC) has been successfully ap-
plied in various fields, such as software engineering [8, 11,
24], antenna design, scheduling, and robotics [16]. In gen-
eral, an evolutionary algorithm begins by generating a popu-
lation, or collection, of random candidate solutions, or indi-
viduals. Next, a fitness function is applied to evaluate each
individual and assign a scalar value proportional to the indi-
vidual’s quality. The evolutionary algorithm then uses this
fitness value to select those individuals that will survive onto
the next generation, or iteration, of the search process. To
form new solutions, evolutionary algorithms typically apply
some key operators such as crossover and mutation. The
crossover operator recombines parts of two existing solu-
tions in the population into a new solution. In contrast, the
mutation operator randomly changes parts of an encoded
solution. By applying these two operators, an evolutionary
algorithm is able to balance exploitation and exploration of
the solution space by combining parts of existing solutions
in promising areas of the solution space while also exploring
new areas that might contain different and useful solutions,
respectively. This iterative process is repeated until either
a satisfactory solution is found, or the maximum number of
generations is exhausted. Typically, the individual with the
highest fitness value is then returned as the output of the
search process.

As an example, consider the Knapsack Problem [7], an
NP-complete problem that arises in domains such as re-
source allocation and cryptography. The problem is defined
as follows: a set of items, each with a non-negative weight
and cost, are to be placed into a knapsack that has a finite
storage capacity. The objective is to maximize the total cost
of the items in the knapsack while ensuring that the total
weight of the items does not exceed its storage capacity.
One possible encoding for the Knapsack problem is a vec-
tor of boolean variables that specifies whether the ith item
is included in the knapsack or not. With this representa-

tion, each variable with a true value in the vector represents
an item that is included in the knapsack. Similarly, a fit-
ness function can be defined to assign a fitness value propor-
tional to the total cost of the items in the knapsack, as long
as the weight of those items does not exceed the knapsack
constraints. The crossover operator then takes two different
vectors of items and creates a new vector by combining parts
of the two existing solutions. The mutation operator, on the
other hand, accepts a vector of items and randomly adds or
removes an item from the vector by changing a boolean vari-
able. This process is repeated until the maximum number of
generations is exhausted, or a high-quality solution is found.

Frameworks. Object-oriented frameworks [6] provide
reusable design and code that can be customized for spe-
cific application domains, as well as to generate families of
applications. Frameworks comprise both “frozen spots” that
are portions of the design hierarchy and code that cannot
be changed, and “hot spots” that refer to the points in the
framework that the application developer can extend and
include in their application code. Frameworks are also char-
acterized by inversion of control, or call-backs, where the
framework itself controls a program’s flow of control. In
particular, developers implement application functionality
that is then called by the framework’s code. In general,
two main types of frameworks exist, black-box and white-
box frameworks. Black-box frameworks are typically easier
to use and provide well-defined interfaces for developers to
call from their application code, thus hiding the framework’s
internal details from the application developer. White-box
frameworks, on the other hand, are meant to be customized
and extended by developers with application-specific code.
As a result, white-box frameworks are more flexible than
black-box frameworks, yet they require developers to be-
come familiar with the internals before reuse is possible.

Several object-oriented frameworks, such as ECJ [18] and
JGAP [20], are widely available and used to support the
development of EC programs [5]. A key difference between
EC frameworks is how generic and extensible the frame-
work is for encoding or representing solutions in different
application domains without requiring application develop-
ers to extend many classes in the framework. While several
EC frameworks do provide generic representations that fa-
cilitate the implementation of EC programs across different
application domains, ultimately it has not been possible to
build a black-box EC framework as developers must always
override some base functionality in the framework, such as
the specific encoding of the problem or the fitness function
used to evaluate the quality of a candidate solution [5]. In
practice, developers typically reuse EC frameworks by cus-
tomizing the configuration of the evolutionary algorithm,
and the encoding, decoding, fitness evaluation, and output
of candidate solutions [1, 5]. As a result, developers must
often become familiar with the design and implementation
of an EC framework, which may comprise over 50,000 lines
of code.

Aspect-Oriented Programming. In object-oriented
programming, code scattering may arise when a single con-
cern (e.g., logging) is implemented throughout multiple mod-
ules [15]. AOP, in contrast, implements individual concerns
by extracting them into aspects that are separate from the
rest of the system [14]. Weaving is the process of compos-
ing individual aspects into a single system. Weaving rules
are defined separately from aspects and applied systemati-

cally by an aspect compiler to the crosscutting modules in
order to produce a self-contained executable program. Join
points [14] are well-defined points in the execution flow of
a program at which crosscutting functionality can be wo-
ven. Pointcuts identify a specific set of join points by apply-
ing regular expressions and pattern matching to filter parts
of the program that match a certain signature. An advice
defines additional code that will run at corresponding join
points. The advice code can be executed before or after a
join point, or even replace the code in the join point en-
tirely. An aspect encapsulates these crosscutting concerns
into a discrete module and comprises methods, fields, point-
cuts, and advice.

2.2 Related Work
While, to the best of our knowledge, no other approaches

have explicitly addressed the introduction of aspects into EC
frameworks, in this subsection we overview a few approaches
that have addressed the problem of modularizing object-
oriented frameworks and programs.

Aspect-oriented development of frameworks. Re-
cently, various aspect-oriented approaches [17, 22] have
been proposed to facilitate the design, implementation, and
extension of object-oriented frameworks. In particular,
Kulesza et al. [17] introduced the concepts of extension join
points and extension aspects. An extension join point ex-
poses the hot spots in an object-oriented framework where
developers may introduce new crosscutting functionality, ei-
ther by selecting optional features or extending classes pro-
vided by the framework. Extension aspects encapsulate the
new crosscutting functionality, thereby separating the core
framework modules from the application-specific concerns
until both are woven together during compilation. In a sim-
ilar approach, Santos [22] et al. proposed the concept of
specialization aspects as a means to modularize a frame-
work’s hot-spots. In their approach, a specialization aspect
is an abstract aspect that defines the corresponding hot-
spots in a framework. These specialization aspects can then
be redefined and composed with other aspects in order to
implement the necessary code that supports a particular
framework feature within a single module. Both of these
approaches can be leveraged to develop new aspect-oriented
EC frameworks that mitigate the entanglement of applica-
tion code within the framework implementation. In con-
trast, the Arachne approach presented in this paper focuses
on separating crosscutting concerns in the application code
from existing and widely used EC frameworks that were im-
plemented without aspect-orientation.

Mixins and Traits. Two solutions have been proposed
to separate features or units of code into discrete modules:
mixins [2] and traits [23]. Mixins provide a light-weight,
inheritance-based mechanism for reusing the same methods
and fields in multiple classes. Mixins differ from traditional
multiple inheritance because they are not intended for in-
stantiation, but instead enable developers to combine and
collect related functionality implemented in different mix-
ins. Traits comprise a set of methods and can be used as
building blocks for classes, but they are not classes them-
selves and may not be inherited. Rather than using inheri-
tance as the composition operator, traits can be composed
using symmetric sum, method exclusion, and other opera-
tors. Although Arachne separates functionality into isolated
modules to streamline development, it differs from the tra-

ditional use of mixins. Specifically, Arachne separates the
most commonly revised components of EC frameworks into
aspects, but it does not create separate class containers for
the code in the aspects. Instead, the class declarations re-
main apart of the framework code and pointcuts are inserted
into the bodies of any class methods that are important for
each component. As such, the finer-grained pointcuts in
Arachne reduce the number of modifications required to the
framework code as compared to mixins, thereby simplify-
ing the approach and minimizing the effort needed to use
Arachne with a new framework.

3. THE ARACHNE APPROACH
This section describes how Arachne encapsulates

application-specific concerns into aspects such that
the number of touch points (e.g., references or function
calls) between the aspects and the EC framework is mini-
mized. First, we present an example EC program that was
implemented by extending an EC framework to illustrate
how application-specific code crosscuts different modules in
the EC framework, thus hampering its maintainability and
understandability. We then present the Arachne approach
in detail as we apply it to the example program. Next, we
present a prototype tool that supports the Arachne approach
by providing partial aspect code generation. Lastly, we
compare the resulting aspect-oriented implementation to
the original implementation of the EC program.

3.1 Crosscutting Application Logic in Evolu-
tionary Computation Frameworks

In EC programs, a key design decision for developers is
to determine how to represent, or encode, the general struc-
ture of a candidate solution in classes and data structures
(e.g., an integer vector) in the EC framework. This en-
coding process explicitly maps a solution in the application
domain to an individual in the evolutionary algorithm, thus
preserving the semantics of evolutionary operators such as
crossover and mutation. Recalling the Knapsack Problem
example introduced earlier, a solution in the application do-
main is a knapsack that contains a set of items. When the
solution is encoded into an individual in the evolutionary
algorithm, only the details that are relevant to the problem
(i.e., the capacity of the knapsack, and the weight and cost
of each item) are encoded. Similarly, after the evolutionary
algorithm modifies an encoded individual using its muta-
tion and crossover operators and evaluates the individual’s
fitness, the algorithm must decode the individual back to a
solution in the application domain. As a result, EC frame-
works concerns are entangled with application-specific code
that defines how candidate solutions should be encoded, de-
coded, and evaluated [5].

Next, we illustrate how application-specific code may
become entangled and scattered throughout different por-
tions of an EC framework. We use an implementation of
the Knapsack Problem that is distributed as an applica-
tion exemplar with the Java Genetic Algorithms Package
(JGAP) [20]. In this implementation, Knapsack accepts a
set of items, each with a weight and value, as inputs, and
outputs the items and quantities to include in a collection
such that the total value is maximized without exceeding a
pre-specified maximum weight constraint.

Figure 1A) presents a UML class diagram that shows
the classes in the implementation and relationships be-

tween them. In this class diagram, shaded classes denote
application-specific code, arrows denote inter-class relation-
ships, and double boxes denote classes that may be affected
if the Knapsack encoding needs to be modified. For instance,
two user-defined classes extend the JGAP framework with
the Knapsack application code: Main and KnapsackFitness-
Function. Main configures and controls the execution of the
genetic algorithm, and it also specifies how to encode can-
didate solutions within JGAP. In particular, Main defines a
vector of items and quantities as the structure for candidate
solutions to the Knapsack optimization problem. Knapsack-
FitnessFunction, on the other hand, realizes the FitnessFunc-
tion interface as required by JGAP. When invoked by the
genetic algorithm to evaluate a candidate solution, Knap-
sackFitnessFunction iterates through the vector of items and
computes the total weight and value of the encoded solution
to the Knapsack Problem.

In this approach, the encoding and evaluation concerns of
an EC framework are spread over multiple extension points,
thereby causing consistency problems when the application-
specific code changes. In particular, Figure 1B) gives a File
View representation of the two classes, KnapsackFitnessFunc-
tion and Main, where differently shaded boxes represent dif-
ferent EC framework concerns instantiated with application-
specific information, such as encoding, decoding, evaluation,
and so forth. As this figure illustrates, Main entangles sev-
eral EC framework concerns with application-specific code,
all within a single monolithic class. This entanglement be-
tween the application code and the JGAP framework com-
plicates maintenance tasks, such as modifying a candidate
solution’s encoding, as developers need to sift through dif-
ferent concerns to identify where code needs to be changed
or updated. Similarly, Figure 1C) presents two code snip-
pets from these classes (Code View), where each EC frame-
work concern is shaded with a gray box. As this figure illus-
trates, application-specific code is duplicated and scattered
across both KnapsackFitnessFunction and Main. Specifically,
KnapsackFitnessFunction comprises application-specific code
based on the encoding and semantics of a candidate solution
as defined in the implementation of Main (i.e., associating a
cell in the vector with a particular volume).

While it seems that changes to the application code would
only affect Main and KnapsackFitnessFunction, it turns out
that several other classes in the JGAP framework are also
susceptible to change, as indicated by double-boxed classes
in Figure 1. For instance, if the encoding is modified, then
in addition to revising both Main and KnapsackFitnessFunc-
tion, developers may also need to extend or customize the
following classes: Initializer and Configuration (both for con-
figuring JGAP), Genotype (for specifying a new type of en-
coding and decoding), and DataType (for formatting output
data). Given that most EC programs are significantly more
complex than this example, it is desirable to minimize de-
pendencies between the application code and the EC frame-
work.

3.2 Arachne Approach
The objective of Arachne is to minimize the amount

of application-code that is scattered and entangled across
various crosscutting concerns in an EC framework. To
achieve this objective, Arachne encapsulates application-
specific code within aspects that can then be woven into the
corresponding EC framework extension points at compile

 /* ... */
 FitnessFunction myFunc = new FF();
 try {
 conf.setFitnessFunction(myFunc);
 } catch(Exception e) {
 System.out.println("Error setting Fitness Function.");
 }
 Gene[] sampleGenes = new Gene[itemVolumes.length];
 for (int i = 0; i < itemVolumes.length; i++) {
 sampleGenes[i] = new IntegerGene(conf, 0, (int) Math
 .ceil(a_knapsackVolume / itemVolumes[i]));
 }
 IChromosome sampleChromosome = new Chromosome(conf, sampleGenes);
 conf.setSampleChromosome(sampleChromosome);
 conf.setPopulationSize(50);
 /* ... */

Base
Chromosome

Base
Gene

Configuration
<<interface>>

Fitness
Function

Genotype

Initializer

Natural
Selector

Population

Main

Knapsack
Fitness

Function

realizes

1..*
1..*

1..*

1

1

1..* 1

1

1
1

1..*

DataElement

application-specific
code

susceptible to
changesLegend:

public double getTotalVolume() {
double totalVolume = 0.0;
for(int i = 0; i < itemQuantities.length; ++i) {

totalVolume += itemQuantities[i]*itemVolumes[i];
}
return totalVolume;

}

Main.java

KnapsackFitnessFunction.java

A) Class Diagram B) File View C) Code View

Figure 1: Knapsack implementation with JGAP.

time. Thus, a key part of the Arachne approach is to iden-
tify join points in a target EC framework where application-
specific code needs to be inserted during compilation. In
general, these join points are related to the encoding, de-
coding, and fitness evaluation of candidate solutions, as well
as the configuration of the evolutionary algorithm and the
output of data [1, 5]. Next, we illustrate the Arachne pro-
cess by manually applying it, step by step, to the Knapsack
problem. In particular, the data flow diagram presented in
Figure 2 overviews the key steps of Arachne. As this figure il-
lustrates, developers must first define an aspect to map the
structure of a candidate solution to a specific encoding or
data structure in the target EC framework. Next, develop-
ers must define an aspect to evaluate the fitness of candidate
solutions. Lastly, developers must implement an aspect to
configure the evolutionary algorithm provided by the EC
framework and format the output of data. Aspect weavers,
such as AspectJ [9, 15], integrate the application code into
the specified pointcuts in the target EC framework, thereby
producing a self-contained executable application.

The following steps illustrate the Arachne approach by ap-
plying it to the GA-based Knapsack exemplar provided by
the JGAP framework [20]. We omit some of the implemen-
tation details due to space constraints. Finally, we leverage
the AspectJ [9, 15] language extension to illustrate the AOP
portion of Arachne. The specific syntax and idioms for ap-
plying Arachne may vary depending on the AOP language
support selected.

1. Encode/Decode Aspect. Create an aspect to define
how to represent candidate solutions in the EC framework.

The Encoding/Decoding aspect comprises a set of point-
cuts and advice to specify the encoding or representation of
candidate solutions in the target EC framework, and vice-
versa. In this step, three subtasks are performed: (a) iden-
tify join points in the target EC framework where candidate

Developer Encoding/
Decoding

AspectsApplication
Code

optimization
problem

so
lu

tio
n

st
ru

ct
ur

e

config params

encoding,
decoding
join points

1:

Fitness
Evaluation

EC
Framework

pointcut, advice for
encoding, decoding

evaluation
join points

fitness
function

stub

so
lu

tio
n

pr
ef

er
en

ce
s

ev
al

ua
tio

n
co

de

Input/
Output
Aspect

2:

3:

pointcut, advice for
evaluating solutions

pointcut, advice for
configuring EC framework

EC
Framework

EC framework
configuration join points

Figure 2: Data Flow Diagram describing the Arachne
approach.

solutions are mapped to specific data structures provided
by the framework; (b) define pointcuts to override the func-
tionality implemented by the framework at these join points;
(c) implement an advice to map the structure of a candidate
solution to a specific encoding or data structure compatible
with the target EC framework. In particular, this advice
should return an instance of a base encoding class provided
by the EC framework.

In addition to encoding candidate solutions within the EC
framework, the Encoding/Decoding aspect must also map
encoded solutions back to the application domain using a

similar strategy. This decoding operation is important as
it enables a fitness function to evaluate the quality of an
encoded solution, as well as the EC framework to output
the solution at the end of the evolutionary process. To ac-
complish this objective, Arachne requires developers to (a′)
identify join points in the target EC framework where indi-
viduals are decoded. Next, (b′) define pointcuts that match
and override these join points. And, finally, (c′) implement
an advice to map an individual back to a solution in the
application domain. In particular, this advice should return
an instance of a candidate solution independent of any EC
framework.

Example. In the Knapsack example, we first (a) iden-
tified join points in the JGAP framework where candidate
solutions were encoded. Specifically, candidate solutions in
JGAP must be mapped to instances of the Gene class, and
then associated with a Configuration class that integrates
the particular encoding with other classes in the framework.
We then (b) defined a pointcut to match and override these
join points with our application code. In particular, each
candidate solution in Knapsack comprises a vector of items,
values, and quantities. As such, we then (c) implemented an
advice that mapped this vector to an array of Gene instances.
Next, for the decoding we (a′) identified join points in the
JGAP framework where candidate solutions were decoded.
In general, JGAP decodes candidate solutions before com-
puting their fitness values and before outputting the result
of the evolutionary process. Next, we defined pointcuts to
match and override these join points (b′). Lastly, we defined
an advice to map IChromosomes, a wrapper for Gene objects,
to a vector of items, values, and quantities (step c′). The
decoding advice then uses this vector to instantiate a new
Knapsack object and return it to the calling function. The
code snippet shown in Figure 3 illustrates the encoding and
decoding implementation in the Encoding/Decoding aspect.

2. Fitness Evaluation. Create an aspect to evaluate the
quality of candidate solutions.

In general, EC frameworks require developers to imple-
ment fitness functions that evaluate the quality of a candi-
date solution. Arachne is no different. However, instead of
extending the EC framework with application-specific eval-
uation code, Arachne requires developers to implement the
evaluation code separate from the EC framework. In par-
ticular, the evaluation code should be implemented as part
of the classes that define the optimization problem model
(i.e., the application logic). Note that this constraint does
not require any additional implementation effort from devel-
opers as they would also have to implement the evaluation
criteria within some extension point of the EC framework.
However, moving the evaluation criteria to classes that de-
fine the optimization problem eliminates the scattering of
application-specific code within different extension points of
the EC framework (as shown in Figure 1C).

Once the evaluation criteria is implemented separately
from the EC framework, developers should define an Evalu-
ationAspect. This aspect should comprise a single pointcut
and an advice that overrides the evaluation of individuals in
the target EC framework. This requires developers to iden-
tify and specify join points and pointcuts where individuals
are evaluated and fitness values are assigned. Lastly, devel-
opers must implement an advice to decode the candidate so-
lution (refer to Step 1 for the Encoding/Decoding aspect that
provides this functionality), invoke that evaluation code, and

1 // (b)
2 pointcut encode (Conf igurat ion conf) :
3 ca l l (∗ Main . getEncoding (Conf igurat ion)) &&

args (conf) ;
4
5 // (c)
6 Gene [] around(Conf igurat ion conf) : encode (

conf) {
7 i n t l en = Knapsack . i tems . l ength ;
8 Gene [] genes = new Gene [l en] ;
9 f o r (i n t i = 0 ; i < l en ; ++i) {

10 genes [i] = new IntegerGene (conf ,
11 0 , (Knapsack . s o l u t i o n . volume () /

Knapsack . i tems [i])) ;
12 }
13 r e turn genes ;
14 }
15
16 // (b ’)
17 pointcut decode (IChromosome s) :
18 ca l l (Knapsack Main . mapToSol (IChromosome)) &&

args (s) ;
19
20 // (c ’)
21 Knapsack around(IChromosome s) : decode (s) {
22 i n t [] c o n f i g = new i n t [s . getGenes () .

l ength] ;
23 f o r (i n t i = 0 ; i < c o n f i g . l ength ; ++i) {
24 c o n f i g [i] = s . getGene (i) . g e t A l l e l e () .

intValue () ;
25 }
26 r e turn new Knapsack (con f i g , Knapsack .

volume) ;
27 }

Figure 3: Encoding/Decoding Aspect
return the computed fitness value.

Example. In the Knapsack example, we implemented
the evaluation criteria as part of the Knapsack class, which
defines the general structure of a solution independently
of any EC framework. In addition, we also had to ex-
tend the JGAP framework by implementing KnapsackFit-
nessFunction, a stub class that realizes the FitnessFunction
interface as required by JGAP. Note that this class only
declares a function stub, as required by the JGAP frame-
work, and is not susceptible to changes in the application
code as it contains no evaluation criteria. Next, we identi-
fied join points in the JGAP framework where fitness values
are computed, such as the evaluation function that must be
implemented by KnapsackFitnessFunction as part of the Fit-
nessFunction interface. We then defined a pointcut to match
the empty evaluation function in KnapsackFitnessFunction.
Lastly, we implemented an advice that decoded an individ-
ual (see Encoding/DecodingAspect), invoked the evaluation
code in Knapsack, and returned the fitness value back to
the original evaluation method such that the evolutionary
algorithm can leverage this fitness information to guide the
search process towards better solutions. Figure 4 presents a
code snippet of the EvaluationAspect.

1 pointcut eva luate (IChromosome a sub j) :
2 ca l l (p r i v a t e ∗ FF. eva luate (IChromosome)) &&

args (a sub j) ;
3
4 double around(IChromosome a sub j) :
5 eva luate (a sub j) {
6 So lu t i on candidate =
7 Main . mapToSol (a sub j) ;
8 r e turn candidate . eva luate () ;
9 }

Figure 4: Evaluation Aspect

3. Input/Output Aspect. Create an aspect to config-
ure the evolutionary algorithm and format the output data.

The InputOutput aspect comprises a set of pointcuts and
advice to configure the evolutionary algorithm and format
the output data generated throughout the evolutionary pro-
cess. First, developers must identify join points and specify
pointcuts in the EC framework where either the evolution-
ary algorithm is configured (i.e., population size) or data
is output. In general, EC frameworks initialize the evolu-
tionary algorithm immediately before the evolutionary algo-
rithm begins its search process. Similarly, EC frameworks
typically output the solution with highest fitness value im-
mediately after the evolutionary algorithm terminates. As a
result, developers must define an advice that configures the
various parameters in the evolutionary algorithm, as well as
formats the output data as necessary. Note that not every
EC program will require the formatting of output data, es-
pecially if the EC framework already provides some basic
functionality for this task.

Example. In the Knapsack example, we defined a point-
cut to match the configuration of the genetic algorithm, as
well as format the output of solutions. Specifically, in JGAP
an evolutionary algorithm is configured by invoking meth-
ods in the Configuration class. Similarly, JGAP is typically
configured to output the solution with highest fitness value
in the population once the evolutionary algorithm termi-
nates. Next, we implemented two advice methods to con-
figure the genetic algorithm and format the output data,
respectively. In particular, the advice that configures the
evolutionary algorithm initializes the Configuration object
and then returns it to the JGAP framework. Similarly, the
advice that formats the output data first decodes the indi-
vidual with highest fitness value (the decoding is performed
by the Encoding/Decoding aspect) and then invokes a print
method in Knapsack to display the evolved solution. The
code snippet in Figure 5 overviews the output formatting in
Input/OuputAspect. Due to space constraints we omit the
advice for configuring the genetic algorithm.

po intcut output (Genotype pop) :
c a l l (private ∗ Main . doOutput (Genotype))

&& args (pop) ;

void around (Genotype pop) : output (pop)
{

best = pop . getFittestChromosome () ;
System . out . p r i n t l n (

Main . mapToSol (bes t)) ;
}

Figure 5: Input/Output Aspect

3.3 Arachne Tool Support
Arachne requires developers to implement several aspects

in order to maintain application-specific code separate from
the target EC framework until compile time. Each aspect
corresponds to a single concern in the EC framework, such
as solution encoding and fitness computation. Within these
aspects, developers specify the corresponding join points and
pointcuts for the target EC framework where an aspect-
weave will insert the corresponding instances of the appli-
cation logic. Unless the application programming interface
or design hierarchy of a target EC framework is modified,
these join points, pointcuts, and portions of the advice can
be reused for other applications. As a result, we have imple-

mented a prototype tool that supports the partial generation
of aspect code for specific target EC frameworks, thereby re-
ducing the effort required from developers to apply Arachne.
Currently, our prototype tool supports the generation of par-
tial aspect code for the JGAP [20] and ECJ [18] frameworks.
Additional EC frameworks can be supported in the future.

The interface for the prototype tool we implemented,
shown in Figure 6, enables developers to choose a target EC
framework, configure the parameters of the evolutionary al-
gorithm (e.g., population size), and select the corresponding
aspects to be generated. We note, however, that the proto-
type tool does not support complete aspect code generation.
Specifically, developers must still provide some details, such
as how a candidate solution should be encoded in a target
EC framework. Nonetheless, this aspect code generator en-
ables developers to reuse all join points and pointcuts for
a target EC framework, as well as some of the advice code
that is EC framework-specific (e.g., configuring the evolu-
tionary algorithm). In addition, this prototype tool sup-
ports the generation of required EC framework-specific con-
structs, such as the fitness function stub that must realize
the FitnessFunction interface in JGAP. In this manner, this
prototype tool enables developers to focus on designing and
implementing the application logic instead of dealing with
internal details of a particular EC framework. To this end,
we have applied this prototype tool to support the use of
both JGAP and ECJ.

Figure 6: Arachne tool support interface for aspect
code generation.

3.4 Resulting AO EC Application
Arachne facilitates application-specific and application-

independent code reuse in EC programs built with the sup-
port of EC frameworks. Application-specific reuse typically
occurs when implementing or migrating an EC program to
a different target EC framework. In particular, Arachne fa-
cilitates the application-specific reuse of the solution struc-
ture (e.g., classes that define what is being optimized), fit-
ness functions, and output data formatting implementa-
tions. Application-independent reuse typically occurs when
implementing different EC programs with the support of
the same target EC framework. Specifically, Arachne, and
in particular the prototype aspect generator tool support
for Arachne, facilitates the application-independent reuse of
the join points and pointcuts in the EC framework, as well

as the advice that specifies the evolutionary algorithm con-
figuration. For instance, 294 (out of 340) lines of code,
comprising join points, pointcuts, and advice, were directly
reused by leveraging the prototype aspect code generator
to implement the previously described Knapsack applica-
tion. Building upon these 294 lines of code, only another
46 lines of code were required to implement the full appli-
cation example. Note that it is also possible to leverage
Arachne to facilitate the reuse of both application-specific
and application-independent code, such as when migrating
existing EC programs to a target EC framework supported
by the Arachne aspect code generator.

The resulting aspect-oriented Knapsack application im-
plemented with JGAP is shown in Figure 7. In this fig-
ure, shaded elements comprise Knapsack-specific application
code, dashed boxes represent aspects introduced by Arachne,
and double boxes represent classes susceptible to changes if
the application code is modified. One class (Main) and one
aspect (Encoding/Decoding) are expanded to show how the
aspects are distributed in each file, and each file is further
expanded to highlight the Encoding joinpoint and its respec-
tive advice that will be woven in at compile time. As this fig-
ure illustrates, the application-specific code is modularized
into a self-contained class, such as Knapsack, or into corre-
sponding aspects that connect Knapsack to the JGAP frame-
work, such as Encoding/DecodingAspect. We note that the
Evaluation and Input/Output aspects defer the fitness evalu-
ation and output data formatting to Knapsack and thus are
not shaded in Figure 7 since they contain no application-
specific code. Lastly, by separating concerns from the EC
framework, changes to the application code are localized to
the Knapsack class and the Encoding/Decoding aspect.

Applying Arachne to the design of Knapsack facilitated
the reuse of application-specific code across both the JGAP
and ECJ frameworks. In particular, no modifications were
required to integrate the Knapsack class with either JGAP
or ECJ. As a result, we were able to reuse the Knapsack
solution definition, evaluation criteria, and data output for-
matting implementations across both EC frameworks; the
reused components are, respectively, the Knapsack class,
Evaluation aspect, and Input/Output aspect. In terms of
application-independent code reuse, neither the encoding
nor pointcuts in ECJ matched those from JGAP. However,
by leveraging the prototype tool support for Arachne, we
were able to reuse the ECJ-specific join points, pointcuts,
and evolutionary algorithm configuration advice, thus only
requiring developers to select an appropriate encoding for
the Knapsack problem in the ECJ framework.

4. CASE STUDY
This section presents two sets of experiments where we ap-

ply Arachne to re-implement EC programs by using aspects
to group together crosscutting concerns in the application
code. These experiments enable us to evaluate how general
the Arachne process is, even when applied to different EC
programs and frameworks. In addition, these experiments
also enable us to assess how aspect-orientation affects the
reuse and maintenance of the application code once it has
been grouped into aspects. Throughout each experiment we
use the AspectJ [9, 14] extension to support AOP for Java.

4.1 Reusing functional logic across different
evolutionary frameworks

The main objective of this experiment is to explore the
application-specific and application-independent code reuse
across different target EC frameworks. First, we extract the
application code from a set of exemplar applications previ-
ously implemented and distributed with the JGAP [20] and
ECJ [18] frameworks. We then apply Arachne to modularize
the application code. Lastly, we use the resulting aspect-
oriented implementation to migrate the extracted applica-
tion code between the two EC frameworks. That is, we mi-
grated a set of exemplars from JGAP to ECJ, and a different
set of exemplars from ECJ to JGAP. Although it is typically
undesirable to migrate an application between frameworks,
this migration might be necessary in EC-based programs to
either improve the EC process or incorporate broader sets
of evolutionary algorithms and techniques [5]. As such, the
primary focus of this experiment is to determine whether
aspect-orientation facilitates the migration process between
two different EC frameworks while enabling reuse of appli-
cation code.

In each exemplar application, a genetic algorithm [10] ef-
ficiently searches for optimal or near-optimal solutions to
NP-Complete optimization problems, such as Knapsack and
Traveling Salesman Problem [7]; variants of these optimiza-
tion problems arise frequently in many application domains.
While these exemplars illustrate how to use the correspond-
ing EC frameworks in similar types of applications, they also
indirectly promote the entanglement of crosscutting con-
cerns across the underlying EC framework.

A key step in the migration process is to extract the cor-
responding application code from each exemplar such that
it may then be ported to a different target EC framework
(i.e., from JGAP to ECJ). We first identified classes that
either extended or customized the hierarchy or behavior of
the underlying EC framework. We then located and ex-
tracted code within these classes responsible for configuring
the evolutionary algorithm, as well as encoding, decoding,
evaluating the fitness, and outputting of candidate solutions.
While this extraction step is nontrivial, the alternative of
rewriting the application code and integrating it with the
target EC framework merely perpetuates the entanglement
of crosscutting concerns across the EC framework. To fa-
cilitate the migration efforts, we leveraged the Arachne pro-
totype tool support and partially generated aspect code for
Encoding/Decoding, fitness evaluation, and Input/Output
for the target EC framework, ECJ in this case. While we
had to manually map the encoding or representation of can-
didate solutions from one EC framework to another (i.e.,
from JGAP classes to ECJ classes), by using the prototype
tool we were able to directly reuse 252 lines of code compris-
ing all join points and pointcut definitions, as well as advice
code specific to configuring the ECJ framework.

The migration process was successful for each exemplar.
In terms of application-specific reuse, we were able to reuse
the solution encoding, fitness evaluation criteria, and out-
put data formatting implementation for each exemplar that
we migrated to a different EC framework. In terms of
application-independent reuse, we were able to leverage the
Arachne aspect generation tool to reuse the join points,
pointcuts, and genetic algorithm configuration advice for all
exemplars being ported to either the JGAP or ECJ frame-
works. In this manner, the Arachne approach and tool
support enabled us to reuse both application-specific and

Base
Chromosome

Base
Gene

Configuration
<<interface>>

Fitness
Function

Genotype

Initializer

Natural
Selector

Population

realizes

1..*
1..*

1

111

1

1

1
1

1..*

Knapsack
Fitness

Function

Main

Input /
Output
Aspect

Encoding /
Decoding

Aspect

Evaluation
AspectKnapsack

1

1

1..*

1

1..* 1..*

application-specific
code

susceptible to
changes

Legend: aspect

Main.java

EncodingDecoding.aj

/* ... */

private static Gene[] getEncoding(Configuration conf) {
// Join point for encoding-related advice

}

/* ... */

/* ... */

pointcut doEncoding(Configuration conf) :
 call(* KnapsackMain.getEncoding(Configuration)) &&
args(conf);

Gene[] around(Configuration conf) : doEncoding(conf) {
 Gene[] ans = null;
 try {
 ans = getEncoding(conf);
 } catch(Exception ex) {
 System.out.println("Error around getEncoding!");
 System.exit(-1);
 }
 return ans;
}

/* ... */

Advice

A) Class Diagram B) File View C) Code View

Figure 7: Aspect-oriented implementation of Knapsack in JGAP obtained by applying Arachne.

application-independent code, thereby facilitating the over-
all migration process.

4.2 Plato Implementation with EC Frame-
works

In this experiment, we apply Arachne to re-engineer
Plato [21], an EC program developed for an industry-
provided problem; we re-engineer one version with JGAP
and another with ECJ. Plato is a decision-making engine
for autonomic [13] and self-adaptive systems [19] that ap-
plies genetic algorithms to generate system configurations
that balance competing functional and non-functional re-
quirements in response to current system and environmental
conditions. Specifically, Plato generates candidate network
configurations for diffusing large amounts of data between
remote data mirrors [12] (data centers for replicating and
protecting data against failures and network outages) with
the primary objective of minimizing operational costs while
maximizing network performance and data reliability. First,
we extract the application code from the corresponding EC
framework implementation. We then apply the Arachne
approach, with the aid of the prototype aspect generation
tool, to modularize and separate the crosscutting concerns
in Plato from the EC frameworks. Finally, we compare and
analyze the resulting aspect-oriented implementation with
its object-oriented implementation.

Encoding. Plato represents each candidate network con-
figuration as a complete graph, where each edge is active or
inactive, and associated with one of seven different methods
for distributing data across the network. A set of custom
encodings is required to represent candidate network con-
figurations as individuals in JGAP. As Figure 8 illustrates,
these custom encodings are implemented by extending and
integrating several classes provided by JGAP. For example,
ActiveGene and PropGene extend BaseGene to encode the
operational status and data diffusion method for a network
link, respectively. LinkAllele is used to represent a single edge
in the complete graph, and thus comprises one instance of
ActiveGene and PropGene each. BaseChromosome defines a
candidate network configuration to be a vector of LinkAlleles,
one for each edge in the complete graph. Similarly, Net-
workGenotype extends Genotype with additional functional-

ity to represent candidate network solutions as individuals
in the population.

Natural
Selector

Remote
DataMirror RDMNetwork

Base
Chromosome

Overlay
RDMNetwork

Network

Genotype

DataLink

Configuration

Base
Gene

<<interface>>
Fitness

Function

Population

Data
Element

Initializer

Fitness
Function

Plato

1

1..*

1..*

1..*

1..*

1

1

1

1

1..*1..*

1..*1..*
Link

Allele
Network

Genotype

1

Active
Gene

Prop
Gene

1 1

Main

1

1

application-specific
code

susceptible to
changesLegend:

Figure 8: Object-oriented implementation of Plato
with JGAP framework.

Fitness Functions. In addition to customizing the
JGAP framework with network-specific representations,
Plato also leveraged a set of fitness functions to evaluate
the quality of candidate solutions in terms of operational
costs, network performance, and data reliability. As Fig-
ure 8 shows, FitnessFunctionPlato realizes the FitnessFunc-
tion interface as required by JGAP. To evaluate a candidate
network configuration, FitnessFunctionPlato must first map
a NetworkGenotype to an OverlayRDMNetwork class. In this
decoding operation, FitnessFunctionPlato iterates through
the vector of LinkAlleles stored in the BaseChromosome, and
then extracts each link configuration. FitnessFunctionPlato
then constructs an overlay network that only comprises ac-
tive links in the graph. The resulting overlay network is
evaluated, and solutions that best balance competing objec-
tives obtain a higher fitness value.

Maintenance Challenges. While the Plato implemen-
tation reused significant amounts of code from the JGAP
framework, the Plato-specific extensions to the JGAP frame-

work may complicate common maintenance tasks. For in-
stance, the shaded classes in Figure 8 illustrate that the
application code that defines the network-specific encoding
is scattered across various classes that extend JGAP. (The
touch points between the application and framework classes
are denoted by bold connecting arrows.) The dependencies
between the network model and the network-specific encod-
ings and evaluation criteria complicate the task of preserving
system consistency while performing even simple modifica-
tions to the application code, as this implies propagating
corresponding changes across multiple files. Furthermore,
double-boxed classes in Figure 8 are also susceptible to ma-
jor modifications in the application code. In either case, de-
velopers must identify the files and the corresponding lines
of code affected by changes in the application-specific code.
Moreover, it may be undesirable to implement the network-
specific encoding and evaluation criteria by extending the
JGAP framework, as it tends to introduce code-bloat that
is unlikely to be reused in different application domains [5].

4.3 Applying Arachne to Plato
We applied Arachne to separate the crosscutting appli-

cation code in Plato from the JGAP framework, and we
call the resulting program Plato-JGAP-AO for brevity. Fig-
ure 9 shows the resulting AO implementation, where shaded
classes comprise application code for modeling and repre-
senting networks of remote data mirrors and dashed classes
represent aspects that modularize the crosscutting applica-
tion code. As this figure illustrates, the network model is
now completely separate from the JGAP framework. More-
over, the Input/Output and Encoding/Decoding aspects are
responsible for mapping the general structure of candi-
date network configurations to individuals in JGAP. Sim-
ilarly, the Evaluation aspect overrides the FitnessFunction-
Plato class, which merely realizes the FitnessFunction inter-
face yet provides no functionality whatsoever, with the eval-
uation criteria implemented within OverlayRDMNetwork. By
leveraging AspectJ [9, 15] we were able to integrate the re-
vised network model with the JGAP framework and thus
leverage genetic algorithms to generate candidate network
configurations.

Natural
Selector

Remote
DataMirror RDMNetwork

Base
Chromosome

Overlay
RDMNetwork

Network

Genotype

DataLink

Configuration

Base
Gene

Input/Output
Aspect

Encoding/
Decoding

Aspect

Evaluation
Aspect

<<interface>>
Fitness

Function

Population

Data
Element Initializer

Fitness
Function

Plato

1

1..*

1

1..*
1..*

1..*

1..*

1..*

1..*

1..*

1 1

1

1

1

1

1
1

1..*1..*

1..*

1..*

1

1

application-specific
code

susceptible to
changesLegend: aspect

Figure 9: Implementation of Plato-JGAP-AO.

Facilitating Maintenance. The resulting aspect-
oriented implementation also modularizes the application
code into classes and aspects according to their functional
objective, including encoding, decoding, fitness evaluation,

and output of candidate network configurations. In partic-
ular, the encoding of candidate network configurations to
JGAP-specific data structures is implemented solely within
the Encoding/Decoding aspect. For instance, only the Encod-
ing/Decoding aspect required modification to change the en-
coding of data diffusion methods in Plato-JGAP-AO. In con-
trast, to change the same data diffusion method encoding in
the OO-based implementation, several classes required mod-
ification, including LinkAllele, PropGene, and NetworkGeno-
type (previously shown in Figure 8). In this manner, Arachne
facilitates the modification of application code as aspect-
oriented tools can automatically weave the corresponding
changes into the JGAP framework, thereby preserving sys-
tem consistency.

Reuse Across EC Frameworks. For comparison, we
also applied Arachne to implement Plato in the ECJ frame-
work, which we call Plato-ECJ-AO for brevity. Figure 10
shows the resulting implementation. As the figure illus-
trates, the network model, shown in the shaded classes, is
completely separate from the ECJ framework. The Encod-
ing/Decoding aspect is responsible for mapping the general
structure of candidate network configurations to individu-
als in ECJ. Similarly, the Evaluation aspect overrides the
fitness evaluation logic in NetIndividual, and the Input/Out-
put aspect overrides user input and the display of statistical
information in the Main and Statistics classes, respectively.
With the exception of NetIndividual, no other class extends or
modifies the ECJ framework. Also note that we were able to
reuse the Network, RDMNetwork, OverlayRDMNetwork, Re-
moteDataMirror, and DataLink classes from Plato-JGAP-AO
without requiring any modifications. As such, reusing these
classes enabled us to reuse the remote data mirror network
model definition, set of fitness functions, and data output
formatting implementation. In addition, we were also able
to reuse the set of pointcuts previously identified in the first
experiment for ECJ.

Remote
DataMirror

RDMNetwork

Overlay
RDMNetwork

Network

DataLink

Encoding/
Decoding

Aspect

Evaluation
Aspect

1

1..*

1

1..*

1..*

NetSpecies NetIndividual LinkGene

Population

1..*

1..*

Species Individual1..*

Fitness

Main Problem

1
1

1
1

Statistics

1
1

Input /
Output
Aspect

1
1

1
1

application-specific
code

susceptible to
changesLegend: aspect

Figure 10: Implementation of Plato-ECJ-AO.

Metric-based Evaluation of Arachne Solution. We
used the CK Metrics suite [4] and the AOP Metrics suite [3]
to objectively measure the effects of the Arachne approach
on the resulting implementations. These metrics were gath-
ered to determine whether aspect-orientation was beneficial
or detrimental to the resulting EC program implementation
in terms of code reuse, flexibility, extensibility, and complex-

Table 1: Object-oriented & AOP metrics for PlatoJ implementations in JGAP and ECJ frameworks.
Metric PlatoJ-JGAP PlatoJ-JGAP-AO PlatoJ-ECJ PlatoJ-ECJ-AO
Total Lines of Code (impl. code only) 1212 1262 1092 1165
Specialization Index 0.27 0.212 0.405 0.383
Instability 1 0.778 1 0.5
Number of Attributes 5.909 3.643 5.5 4.2
Number of Packages 1 2 1 2
Method Lines of Code 4.612 4.209 4.329 3.958
Weighted Methods Per Class 25.182 21.357 25.7 24
Number of Overridden Methods 1.818 1.429 2 2
Nested Block Depth 1.306 1.266 1.302 1.294
Lack of Cohesion of Methods 0.341 0.295 0.382 0.295
McCabe Cyclomatic Complexity 1.731 1.689 1.725 1.678
Number of Parameters 0.662 0.661 0.745 0.79
Efferent Coupling 6 5 6 3
Depth of Inheritance Tree 1.636 1.5 2 2

ity, each of which affects future maintenance tasks. Table 1
shows the collected object-oriented and aspect-oriented met-
rics for both versions of PlatoJ, based on the JGAP and ECJ
frameworks, respectively. A shaded cell in this table indi-
cates a better metric value than its counterpart. In general,
the resulting aspect-oriented implementations indicated im-
provements for the majority of metrics reported. In partic-
ular, the aspect-oriented metrics report a more modular de-
sign that, in turn, reduces complexity at the implementation
level (as indicated by the Method Lines of Code, Weighted
Methods per Class, Nested Block Depth, and McCabe Cy-
clomatic Complexity metrics). Moreover, by modularizing
the crosscutting application-specific details, the correspond-
ing classes and aspects increased in cohesion (as indicated by
the Lack of Cohesion in Methods). These results suggest the
aspect-oriented version of the EC programs are more focused
in their implementation details, thereby easing maintenance
tasks in the future.

While most metrics indicated improvements in the result-
ing aspect-oriented implementations, two particular metrics
indicated slight detrimental effects. First, the total number
of packages upon which the resulting EC programs depend
increased from 1 to 2. This increase in package dependency
is a direct result of importing the AspectJ support to weave
in the separate application logic into the corresponding loca-
tions in the target EC framework. Second, the total number
of lines of code also increased in each aspect-oriented im-
plementation. These additional lines of code define the join
points, pointcuts, and advice in each aspect, which would
not be present in the object-oriented version. While it is
typically undesirable to increase the total lines of code in a
system as it implies greater maintenance efforts, in this case
the Arachne tool support generated the majority of those
lines of code automatically for the developer. Thus, while
the size of the aspect-oriented EC program slightly increased
because of Arachne, developers did not have to spend effort
on implementing the majority of those additional lines.

5. CONCLUSIONS
We have presented Arachne, an aspect-oriented approach

for developing EC programs. Arachne leverages AOP not
only to separate crosscutting application code from its sup-
porting EC framework, but also to automatically weave por-

tions of the application code into their corresponding exten-
sion points in the target EC framework during compilation.
To support the Arachne approach, we have also developed a
prototype tool that generates aspect code, thereby encapsu-
lating join points and pointcuts for different EC frameworks.
Both Arachne and its supporting tool enable developers to
focus on the implementation of the application code instead
of learning details of the implementation and hierarchy of
the EC framework. We demonstrated Arachne and its sup-
porting tool by re-engineering a set of EC programs that in-
clude EC benchmarks and an industry-based EC program,
previously implemented by extending and customizing two
widely used EC frameworks, JGAP and ECJ.

Experimental results show aspect-orientation improves
the design and quality of resulting EC programs. Differences
between the object-oriented and aspect-oriented metrics col-
lected from these experiments suggest that Arachne improves
the modularity and cohesiveness of EC programs. In partic-
ular, resulting EC programs are better modularized because
each part of the application code that interfaces with the
EC framework is isolated into corresponding aspects. In
practice, we interpret these metrics as indicative that the
aspect-oriented code is more cohesive, focused, and easier
to verify and validate, as shown by the Lack of Cohesion in
Methods, Method Lines of Code, and McCabe Cyclomatic
Complexity metrics, respectively. In this manner, Arachne
facilitates identifying where to perform changes to the ap-
plication code, and then automatically propagate these to
their corresponding extension points in the EC framework
during weaving. We also note that the majority of collected
software engineering metrics suggest that aspect-orientation
leads to an improved design and implementation of EC pro-
grams. However, a possible threat to validity in this study,
and therefore to its results, is the small size of the programs
being considered. A more thorough exploration of these ef-
fects needs to be carried out with additional EC implemen-
tations.

It is worth noting that Arachne did not cause any ad-
verse side-effects upon the application behavior or perfor-
mance in any of the experiments conducted for this work.
The weaving process that inserts application code into cor-
responding extension points of an EC framework occurs at
compile time, not at run time. Furthermore, even though
Arachne encapsulates the fitness evaluation into a dedicated

module apart from the EC framework, the implementation
for evaluating candidate solutions is identical in both the
object-oriented and aspect-oriented versions. As a result,
the aspect-oriented EC program does not suffer from de-
graded performance when compared to its object-oriented
counterpart implementation.

While this study focused on object-oriented frameworks
for building EC applications, we believe the Arachne ap-
proach is also applicable to other application-domain frame-
works. Arachne targets a bidirectional dependency between
the application code and its supporting framework. In the
same spirit, Arachne should be applicable to object-oriented
frameworks in other application domains that meet the fol-
lowing criteria. First, the object-oriented framework must
provide a set of data structures or containers that can be
combined or extended with the objective of representing,
encoding, or storing the problem being solved within the
framework. Second, the application logic must crosscut
several classes in the representation or encoding extension
points. Third, the internal details or semantics of various
classes in the representation extension points must crosscut
at least two other extension points in the object-oriented
framework. In this manner, EC frameworks serve as unique
and concrete examples of object-oriented frameworks where
application code must be mapped into a set of framework
classes in several extension points while, at the same time,
the semantics of this mapping also crosscut other extension
points in the EC framework.

Future directions include applying Arachne to re-engineer
additional EC programs, as well as extending the set of sup-
ported EC frameworks. We are also exploring whether dy-
namic aspect weaving techniques may support the dynamic
insertion and removal of fitness functions for EC programs,
thereby enabling changes to how candidate solutions are
evaluated in response to changing requirements.

6. REFERENCES
[1] T. Back, U. Hammel, and H.-P. Schwefel. Evolutionary

computation: Comments on the history and current state.
IEEE Transactions on Evolutionary Computation, 1:3–17,
1997.

[2] G. Bracha and W. Cook. Mixin-based inheritance. In
Proceedings of the European conference on object-oriented
programming on Object-oriented programming systems,
languages, and applications, pages 303–311. ACM, 1990.

[3] M. Ceccato and P. Tonella. Measuring the effects of
software aspectization. In First Workshop on Aspect
Reverse Engineering, 2004.

[4] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE Transactions on Software
Engineering, 20(6):476–493, 1994.

[5] C. Gagne and M. Parizeau. Genericity in evolutionary
computation software tools: Principles and case-study.
International Journal on Artificial Intelligence Tools,
15(2):173–194, 2006.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 195.

[7] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., New York, NY, USA, 1990.

[8] M. Harman, F. Islam, T. Xie, and S. Wappler. Automated
test data generation for aspect-oriented programs. In
Proceedings of the 8th ACM International Conference on
Aspect-Oriented Software Development, pages 185–196,
Charlottesville, Virginia, USA, 2009. ACM.

[9] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In
Proceedings of the Third International Conference on
Aspect-oriented Software Development, pages 26–35,
Lancaster, UK, 2004. ACM.

[10] J. H. Holland. Adaptation in Natural and Artificial
Systems. MIT Press, Cambridge, MA, USA, 1992.

[11] A. C. Jensen and Betty H.C. Cheng. On the Use of Genetic
Programming for Automated Refactoring and the
Introduction of Design Patterns. In Proceedings of the 2010
Genetic and Evolutionary Computation Conference,
Portland, OR, USA, 2010. ACM.

[12] K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkes.
Designing for disasters. In Proceedings of the 3rd USENIX
Conference on File and Storage Technologies, pages 59–62,
Berkeley, CA, USA, 2004. USENIX Association.

[13] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, 2003.

[14] G. Kiczales and E. Hilsdale. Aspect-oriented programming.
In Proceedings of the 8th European Software Engineering
Conference held jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, page 313, Vienna, Austria, 2001. ACM.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of aspectj. In Proceedings
of the 15th European Conference on Object-Oriented
Programming, pages 327–353, London, UK, 2001.
Springer-Verlag.

[16] J. R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection (Complex
Adaptive Systems). The MIT Press, December 1992.

[17] U. Kulesza, V. Alves, A. Garcia, C. J. de Lucena, and
P. Borba. Improving Extensibility of Object-Oriented
Frameworks with Aspect-Oriented Programming. In Reuse
of Off-the-Shelf Components, volume 4039 of Lecture Notes
in Computer Science, pages 231–245. Springer Berlin /
Heidelberg, 2006.

[18] S. Luke. ECJ: A Java evolutionary computation library.
http://cs.gmu.edu/ eclab/projects/ecj/, 2006.

[19] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and Betty
H.C. Cheng. Composing adaptive software. Computer,
37(7):56–64, 2004.

[20] K. Meffert. JGAP: Java Genetic Algorithms and Genetic
Programming Package. http://jgap.sf.net.

[21] A. J. Ramirez, D. B. Knoester, Betty H.C. Cheng, and
P. K. McKinley. Applying Genetic Algorithms to Decision
Making in Autonomic Computing Systems. In Proceedings
of the Sixth International Conference on Autonomic
Computing, pages 97–106 (Best Paper Award), Barcelona,
Spain, June 2009.

[22] A. L. Santos, A. Lopes, and K. Koskimies. Framework
specialization aspects. In Proceedings of the Sixth
International Conference on Aspect-oriented Software
Development, pages 14–24, Vancouver, British Columbia,
Canada, March 2007. ACM.

[23] N. Shärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits:
Composable units of behaviour. ECOOP
2003–Object-Oriented Programming, pages 327–339, 2003.

[24] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest.
Automatically Finding Patches Using Genetic
Programming. In Proceedings of the 2009 International
Conference on Software Engineering, pages 364–374,
Vancouver, Canada, May 2009. IEEE Computer Society.

