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The Big Picture

“The total lifetime cost of maintaining a 
widely used program is typically 40 percent 
or more of the cost of developing it. ” 

Fred Brooks, The Mythical Man Month
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The Big Picture

“... unless there is a clear reason to prefer the simpler 
solution, it is probably wise to choose the flexibility 
provided by the design pattern solution because unexpected 
new requirements often occur.”

                                            Prechelt et al.

L. Prechelt, B. Unger, W.F. Tichy, P. Brossler, and L.G. Votta. A 
controlled experiment in maintenance comparing design 
patterns to simpler solutions. IEEE Transactions on Software 
Engineering, pages 1134–1144, 2001.
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The Problem

Refactoring is hard,

tedious,

error-prone,

and necessary.
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The Problem

• But there is hope.  Automated refactorings include

‣ Renaming classes

‣ Generating get/set methods

‣ Pulling up methods into a superclass

‣ Generate an interface from a class

• What about larger refactorings?
Eclipse
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Design Patterns

A design pattern is a reusable solution to a common design 
problem that occurs in a particular context. [Gamma et al.]

Benefits:

‣ Captures the experience of professional designers

‣ Enables designers to think at a higher level of abstraction

‣ Improves the maintainability and reusability of software designs
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Example: Abstract Factory

makeAuto() : Automobile

capacity : int
active : bool

ConvertibleFactory

makeAuto() : Automobile

capacity : int
active : bool

SedanFactory

makeAuto() : Automobile

capacity : int
active : bool

CoupeFactory

FreightCompany

ships

makes

Convertible Sedan Coupe

makes makes

shipsships

visits visits

visits
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Example: Abstract Factory

makeAuto() : Automobile

capacity : int
active : bool

ConvertibleFactory

makeAuto() : Automobile

capacity : int
active : bool

SedanFactory

makeAuto() : Automobile

capacity : int
active : bool

CoupeFactory

FreightCompany

ships

makes

Convertible Sedan Coupe

makes makes

shipsships

visits visits

visits

makeAuto() : Automobile

capacity : int
active : bool

Factory

ConvertibleFactory SedanFactory CoupeFactory

FreightCompany

ships

Automobile

manufactures

Convertible

Sedan

Coupe

visits
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Thesis Statement

It is possible to use techniques from evolutionary 
computation, with guidance from software engineering 
metrics, in order to improve the design of existing software 
through the introduction of design pattern instances.
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Contributions

1. Novel GP encoding for refactoring software designs.

2. Process for automatically instantiating design patterns in 
existing software designs.

3. Step-by-step traceability for realizing a suggested design 
refactoring to enable manual or automated application.
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Related Work

• [Seng et al.]: GA for optimizing a class hierarchy

• Key insight:

‣ Moving operations between classes in a hierarchy can improve design quality

‣ Evolution can efficiently explore sequences of refactorings to apply

‣ Example: promoting a common operation to a superclass

	�������������
�	
CEO

	�������������
�	
Engineer

Employee

CEO Engineer

	�������������
�	
Employee

Before After
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Related Work

• [O’Keeffe & Ó Cinnéide]: “search-based refactoring”

• Key insight:

‣ Perhaps other (non-GA) evolutionary approaches are more suitable for search-
based refactoring

• Study compared evolutionary approaches

‣ Genetic Algorithm, Simulated Annealing, and Hill Climbers

‣ Objective:  to choose the optimal sequence of 14 refactoring steps, using software 
engineering metrics to evaluate solution quality

‣ Conclusion:  Multiple-restart hill-climber is most effective.
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Existing approaches are effective for automating 
simple, incremental changes.

‣ No support for composition of multiple changes.

‣ They do not address larger refactoring strategies, such as 
design patterns.
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Our Approach

‣ Focus on the introduction of design patterns.

‣ Use genetic programming (GP), with a tree-based 
genotype, to leverage composition of mutation 
operators.

‣ Use metrics to evaluate fitness of modified designs.
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Design Patterns

This approach supports seven Gamma design patterns:

‣ Abstract Factory

‣ Adapter

‣ Bridge

‣ Composite

‣ Decorator

‣ Prototype

‣ Proxy
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Initialize Population

Evaluate Population

Crossover & Mutation

Sample Best Individuals

Return Best Individual

[n generations completed]

Evolutionary Approach
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Mutation 
Operators

Solution 
Representation

Fitness 
Function

Evolutionary Approach
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Mutation 
Operators

Solution 
Representation

Fitness 
Function

Evolutionary Approach
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Population

Individual

Abstract Syntax Tree

+

*

x

+

73x

x2 + 10

Traditional GP
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Subtree Crossover
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Parent 1 Parent 2

-
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Child 1 Child 2
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Population

Transformation 
Tree

Design Graph

modifies

Individual

Information nodes

Transformation nodes

Extended GP
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Transformation Tree

Root

TN1 TN2

IN1 IN2 IN1

Convertible
(class)

“DomainNoun”
(string)IAutomobile

(interface)
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Driver Convertible
Convertible
Factory

* 1
producesdrives

Driver Convertible
Convertible 

Factory

call

call

instantiate

Software Design

Design Graph

represented by
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Driver Convertible
Convertible
Factory

* 1
producesdrives

Driver Convertible
Convertible 

Factory

call

call

instantiate

Software Design

Design Graph

represented by
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Design Graph Elements:

Driver Convertible
Convertible
Factory

* 1
producesdrives

Driver Convertible
Convertible 

Factory

call

call

instantiate

Software Design

Design Graph

represented by
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• Vertices:

‣ Classes

‣ Interfaces

‣ Operations

• Edges

‣ Aggregations

‣ Associations

‣ Function calls

‣ Inheritance

‣ Instantiations

Design Graph Elements:

Driver Convertible
Convertible
Factory

* 1
producesdrives

Driver Convertible
Convertible 

Factory

call

call

instantiate

Software Design

Design Graph

represented by
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Mutation 
Operators

Solution 
Representation

Fitness 
Function

Evolutionary Approach
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Mutation 
Operators

Solution 
Representation

Fitness 
Function

Evolutionary Approach
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Course-Grained Refactorings

makeAuto() : Automobile

capacity : int
active : bool

ConvertibleFactory

makeAuto() : Automobile

capacity : int
active : bool

SedanFactory

makeAuto() : Automobile

capacity : int
active : bool

CoupFactory

FreightCompany

ships

makes

Convertible Sedan Coup

makes makes

shipsships

visits visits

visits

makeAuto() : Automobile

capacity : int
active : bool

Factory

ConvertibleFactory SedanFactory CoupFactory

FreightCompany

ships

Automobile

manufactures

Convertible

Sedan

Coup

visits

??????
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Course-Grained Refactorings

makeAuto() : Automobile

capacity : int
active : bool

ConvertibleFactory

makeAuto() : Automobile

capacity : int
active : bool

SedanFactory

makeAuto() : Automobile

capacity : int
active : bool

CoupFactory

FreightCompany

ships

makes

Convertible Sedan Coup

makes makes

shipsships

visits visits

visits

makeAuto() : Automobile

capacity : int
active : bool

Factory

ConvertibleFactory SedanFactory CoupFactory

FreightCompany

ships

Automobile

manufactures

Convertible

Sedan

Coup

visits

??????T1, T2, T3
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Population

Transformation 
Tree

Design Graph

modifies

Individual

Information nodes

Transformation nodes

Extended GP
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Population

Transformation 
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Individual

Information nodes

Transformation nodes
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Transformation Tree

Root

TN1 TN2

IN1 IN2 IN1

Convertible
(class)

“DomainNoun”
(string)IAutomobile

(interface)
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Transformation Tree

Root

TN1 TN2

IN1 IN2 IN1

Convertible
(class)

“DomainNoun”
(string)IAutomobile

(interface)
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Minitransformations

• Six mini-patterns, or minitransformations:

1. Abstract Access

2. Abstraction

3. Delegation

4. Encapsulate Construction

5. Partial Abstraction

6. Wrapper
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Abstract Access Transformation

Purpose: to modify a class Context to access another class 
Concrete more abstractly through an interface IConcrete.

doX() : int
doY() : int

name : String
Concrete

Context
doX() : int
doY() : int

name : String
Concrete

Context
doX() : int
doY() : int

IConcrete 

<<interface>>

implements

doX() : int
doY() : int

IConcrete 

<<interface>>

uses

uses

Before After

implements
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Abstraction Transformation

Purpose:  to derive an interface from an existing class Concrete, 
enabling other classes to view Concrete more abstractly.

doX() : int
doY() : int

name : String
Concrete

doX() : int
doY() : int

name : String
Concrete

Before After

doX() : int
doY() : int

IConcrete

<<interface>>

implements
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Delegation Transformation

Purpose:  to delegate a subset of the functionality of one class 
to another class.

doX() : int
doY() : int

name : String
Concrete

doX() : int
name : String
Concrete

Before After

doY() : int
ConcreteComponent

calls
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Encapsulate Construction Transformation

Purpose:  to localize class instantiations into a dedicated 
operation.

CopyShape() : Shape
RandomizeShape() : Shape
TransformShape() : Shape

numShapes : int
ShapeManager

Before After

CopyShape() : Shape
RandomizeShape() : Shape
TransformShape() : Shape
CreateShape() : Shape

numShapes : int
ShapeManager
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Partial Abstraction Transformation

Purpose:  to create an abstract class with the same interface as 
an existing class.

doX() : int
doY() : int

name : String
Concrete

name : String
Concrete

Before After

doX() : int
doY() : int

Abstract
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Wrapper Transformation

Purpose:  to wrap a class with another, thus enabling run-time 
replacement of the wrapped class.

Before After

Client1

doX() : int
doY() : int

IConcrete 
<<interface>>

uses

Client2

doX() : int
doY() : int

name : String
Wrapper

doX() : int
doY() : int

IConcrete 
<<interface>>

uses

Client1
uses

Client2
uses
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Minitransformations in Context

RootNode

PartialAbstraction

Convertible "Automobile"
Convertible

Factory
"Factory"

PartialAbstraction

Transformation Tree

Target Software Design (Elided UML Class Diagram)

Population

In
d

iv
id

u
a
l

Driver Convertible
Convertible
Factory

* 1
producesdrives

Driver Convertible
Convertible 

Factory

call

call

instantiate

Design Graph (Elided)

Legend

Transformation Node

Information Node

Class

Individual
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Solution 
Representation

Evolutionary Approach

Fitness 
Function

Mutation 
Operators

34



Solution 
Representation

Evolutionary Approach

Fitness 
Function

Mutation 
Operators
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Fitness Function

Two initial terms:

1. Quality of evolved software design

•  Metrics

2. Presence of design patterns

•  Design pattern detector
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Metrics

• Hierarchical Metrics for Object-Oriented Design Quality 
[Bansiya & Davis]

‣ Known as “QMOOD”

‣ Comprises 11 metrics

‣ Evaluates multiple characteristics: cohesion, coupling, design size, etc.

‣ Amenable to automation

‣ Implemented naturally as a set of graph algorithms
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Metrics

Graph Metric 0.825

Coupling = 0.5*M1 + 0.25*M2 - 0.5*M3

Overall = 0.15*Cohesion - 0.15*Coupling + ...
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Design Pattern Detection

• Design patterns have a characteristic signature

‣ Can be detected using a logic or query language (e.g., Prolog or SQL)

‣ Example Prolog query for the Abstract Factory pattern:
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Fitness Function

F= Metrics -
C1*nodeCountPenalty + 
C2*patternReward + 
C3*matchingSequencesReward
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Data Flow 
Diagram

Software 

Design (XMI)

Convert XMI 

to Graph

Create 

Population

Evaluate 

Population

Design 

Patterns

Metrics

Select 

Individuals for 

Next 

Population

Crossover 

and Mutation

Select Best 

Individual(s)

Design Graph

Individuals

Individuals Annotated

with Fitness Value

Sample of Highly Fit 

Individuals

[n Generations Completed]

New

Population

User

Refactoring Solution(s)
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Implementation

• Input model format:  ArgoUML XMI

• GP Framework:  Evolutionary Computation for Java (ECJ)

• Graph support:  jGraph

• Detection of Design Patterns:  jLog and HSQLDB
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Validation

5 experiments

4 strategies for parameter tuning

1 large case study
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Parameter Tuning

1. Plain vanilla

2. Constraining the number of transformation nodes

3. Rewarding design pattern presence

4. Rewarding known sequences of transformation nodes
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Setup

• Parameters

‣ 100 individuals

‣ 100 generations

‣ Tournament selection with tournament size = 7

‣ 90% crossover+mutation; 10% reproduction

• Experiments I-IV

‣ 290 software designs

‣ 5 trials per design, each with a unique random seed
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Experiment I

• Purpose: to establish a baseline.

• No rewards or penalties; only metrics are considered

• Fitness function:

‣ F = Metrics + 0.0*nodeCountPenalty 0.0*patternReward + 
0.0*matchingSequenceReward

• Hypothesis:  at least one new design pattern instance will 
evolve in each of the 290 models.

• Result:  hypothesis validated.
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Experiment I
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Experiment II

• Purpose: to penalize large numbers of transformations

• New term in fitness function: nodeCountPenalty

‣ We vary the coefficient on this term:  0.0025, 0.025, 0.25, 0.5

• Fitness function:

‣ F = Metrics + X*nodeCountPenalty + 0.0*patternReward + 
0.0*matchingSequencesReward

• Hypothesis: a larger coefficient will reduce the number of 
transformations in the average individual

• Result: hypothesis validated.
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Experiment II

nodeCountPenalty Coefficient
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Experiment III

• Purpose: to reward creation of design pattern instances

• New term in fitness function: patternReward

‣ We vary the coefficient on this term:  0.025, 0.25, 0.5, 1.0, 2.0

• Fitness function:

‣ F = Metrics + 0.025*nodeCountPenalty + X*patternReward + 
0.0*matchingSequencesReward

• Hypothesis: a larger coefficient will lead to a larger 
number of design pattern instances on average.

• Result: hypothesis validated.
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Experiment IV

• Purpose: to reward specific sequences of transformations

• New term in fitness function: matchingSequencesReward

‣ We vary the coefficient on this term:  0.025, 0.25, 0.5, 1.0, 2.0

• Fitness function:

‣ F = Metrics + 0.025*nodeCountPenalty + 1.0*patternReward + 
X*matchingSequencesReward

• Hypothesis: a larger coefficient will lead to a larger 
number of design pattern instances on average.

• Result: hypothesis validated.
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Experiment V

• Purpose: to test the approach on a large design.

• Parameters

‣ 25 generations

• Fitness function:

‣ F = Metrics + 0.025*nodeSizePenalty + 1.0*patternReward + 
0.5*matchingSequencesReward

• Hypothesis:  at least one instance of each supported 
design pattern type will evolve during the run.

• Result: FIXME.

54



Experiment V

• ReMoDD case study
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Discussion

• Pattern complexity affects instance frequency

• Trends are not always monotonic

• Trials with no DP instances had higher quality than other 
trials for the same model

• In experiment IV, average design quality increased by 2.6

56



Conclusions

• EC can be used to support automated design refactoring

• Validated on large body of designs.

‣ 290 models

‣ real-world case study

‣ exploration of several rewards and penalties

• Impact:

‣ design assistance tools

‣ step-by-step process for automated refactoring
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Future Work

• Consider fitness for purpose of specific metrics and design 
patterns

• Explore synergy between metrics and DPs

• Look for other metric suites
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Questions / Comments
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