
Using Evolutionary Computation
to Automatically Refactor Software
Designs to Include Design Patterns

Adam C. Jensen

M.S. Thesis Defense November 30, 2009

1

The Big Picture

“The total lifetime cost of maintaining a
widely used program is typically 40 percent
or more of the cost of developing it. ”

Fred Brooks, The Mythical Man Month

2

The Big Picture

“... unless there is a clear reason to prefer the simpler
solution, it is probably wise to choose the flexibility
provided by the design pattern solution because unexpected
new requirements often occur.”

 Prechelt et al.

L. Prechelt, B. Unger, W.F. Tichy, P. Brossler, and L.G. Votta. A
controlled experiment in maintenance comparing design
patterns to simpler solutions. IEEE Transactions on Software
Engineering, pages 1134–1144, 2001.

3

The Problem

Refactoring is hard,

tedious,

error-prone,

and necessary.

4

The Problem

• But there is hope. Automated refactorings include

‣ Renaming classes

‣ Generating get/set methods

‣ Pulling up methods into a superclass

‣ Generate an interface from a class

• What about larger refactorings?
Eclipse

5

Design Patterns

A design pattern is a reusable solution to a common design
problem that occurs in a particular context. [Gamma et al.]

Benefits:

‣ Captures the experience of professional designers

‣ Enables designers to think at a higher level of abstraction

‣ Improves the maintainability and reusability of software designs

6

Example: Abstract Factory

makeAuto() : Automobile

capacity : int
active : bool

ConvertibleFactory

makeAuto() : Automobile

capacity : int
active : bool

SedanFactory

makeAuto() : Automobile

capacity : int
active : bool

CoupeFactory

FreightCompany

ships

makes

Convertible Sedan Coupe

makes makes

shipsships

visits visits

visits

7

Example: Abstract Factory

makeAuto() : Automobile

capacity : int
active : bool

ConvertibleFactory

makeAuto() : Automobile

capacity : int
active : bool

SedanFactory

makeAuto() : Automobile

capacity : int
active : bool

CoupeFactory

FreightCompany

ships

makes

Convertible Sedan Coupe

makes makes

shipsships

visits visits

visits

7

Example: Abstract Factory

makeAuto() : Automobile

capacity : int
active : bool

ConvertibleFactory

makeAuto() : Automobile

capacity : int
active : bool

SedanFactory

makeAuto() : Automobile

capacity : int
active : bool

CoupeFactory

FreightCompany

ships

makes

Convertible Sedan Coupe

makes makes

shipsships

visits visits

visits

7

Example: Abstract Factory

makeAuto() : Automobile

capacity : int
active : bool

ConvertibleFactory

makeAuto() : Automobile

capacity : int
active : bool

SedanFactory

makeAuto() : Automobile

capacity : int
active : bool

CoupeFactory

FreightCompany

ships

makes

Convertible Sedan Coupe

makes makes

shipsships

visits visits

visits

makeAuto() : Automobile

capacity : int
active : bool

Factory

ConvertibleFactory SedanFactory CoupeFactory

FreightCompany

ships

Automobile

manufactures

Convertible

Sedan

Coupe

visits

7

Thesis Statement

It is possible to use techniques from evolutionary
computation, with guidance from software engineering
metrics, in order to improve the design of existing software
through the introduction of design pattern instances.

8

Contributions

1. Novel GP encoding for refactoring software designs.

2. Process for automatically instantiating design patterns in
existing software designs.

3. Step-by-step traceability for realizing a suggested design
refactoring to enable manual or automated application.

9

Related Work

• [Seng et al.]: GA for optimizing a class hierarchy

• Key insight:

‣ Moving operations between classes in a hierarchy can improve design quality

‣ Evolution can efficiently explore sequences of refactorings to apply

‣ Example: promoting a common operation to a superclass

	�������������
�	
CEO

	�������������
�	
Engineer

Employee

CEO Engineer

	�������������
�	
Employee

Before After

10

Related Work

• [O’Keeffe & Ó Cinnéide]: “search-based refactoring”

• Key insight:

‣ Perhaps other (non-GA) evolutionary approaches are more suitable for search-
based refactoring

• Study compared evolutionary approaches

‣ Genetic Algorithm, Simulated Annealing, and Hill Climbers

‣ Objective: to choose the optimal sequence of 14 refactoring steps, using software
engineering metrics to evaluate solution quality

‣ Conclusion: Multiple-restart hill-climber is most effective.

11

Existing approaches are effective for automating
simple, incremental changes.

‣ No support for composition of multiple changes.

‣ They do not address larger refactoring strategies, such as
design patterns.

12

Our Approach

‣ Focus on the introduction of design patterns.

‣ Use genetic programming (GP), with a tree-based
genotype, to leverage composition of mutation
operators.

‣ Use metrics to evaluate fitness of modified designs.

13

Design Patterns

This approach supports seven Gamma design patterns:

‣ Abstract Factory

‣ Adapter

‣ Bridge

‣ Composite

‣ Decorator

‣ Prototype

‣ Proxy

14

Initialize Population

Evaluate Population

Crossover & Mutation

Sample Best Individuals

Return Best Individual

[n generations completed]

Evolutionary Approach

15

Mutation
Operators

Solution
Representation

Fitness
Function

Evolutionary Approach

16

Mutation
Operators

Solution
Representation

Fitness
Function

Evolutionary Approach

16

Population

Individual

Abstract Syntax Tree

+

*

x

+

73x

x2 + 10

Traditional GP

17

Subtree Crossover

+

*

x

2

x

-

x 7

+

*

x

x

x

Parent 1 Parent 2

-

2 7

Child 1 Child 2

18

Population

Transformation
Tree

Design Graph

modifies

Individual

Information nodes

Transformation nodes

Extended GP

19

Transformation Tree

Root

TN1 TN2

IN1 IN2 IN1

Convertible
(class)

“DomainNoun”
(string)IAutomobile

(interface)

20

Driver Convertible
Convertible
Factory

* 1
producesdrives

Driver Convertible
Convertible

Factory

call

call

instantiate

Software Design

Design Graph

represented by

21

Driver Convertible
Convertible
Factory

* 1
producesdrives

Driver Convertible
Convertible

Factory

call

call

instantiate

Software Design

Design Graph

represented by

21

Design Graph Elements:

Driver Convertible
Convertible
Factory

* 1
producesdrives

Driver Convertible
Convertible

Factory

call

call

instantiate

Software Design

Design Graph

represented by

21

• Vertices:

‣ Classes

‣ Interfaces

‣ Operations

• Edges

‣ Aggregations

‣ Associations

‣ Function calls

‣ Inheritance

‣ Instantiations

Design Graph Elements:

Driver Convertible
Convertible
Factory

* 1
producesdrives

Driver Convertible
Convertible

Factory

call

call

instantiate

Software Design

Design Graph

represented by

21

Mutation
Operators

Solution
Representation

Fitness
Function

Evolutionary Approach

22

Mutation
Operators

Solution
Representation

Fitness
Function

Evolutionary Approach

22

Course-Grained Refactorings

makeAuto() : Automobile

capacity : int
active : bool

ConvertibleFactory

makeAuto() : Automobile

capacity : int
active : bool

SedanFactory

makeAuto() : Automobile

capacity : int
active : bool

CoupFactory

FreightCompany

ships

makes

Convertible Sedan Coup

makes makes

shipsships

visits visits

visits

makeAuto() : Automobile

capacity : int
active : bool

Factory

ConvertibleFactory SedanFactory CoupFactory

FreightCompany

ships

Automobile

manufactures

Convertible

Sedan

Coup

visits

??????

23

Course-Grained Refactorings

makeAuto() : Automobile

capacity : int
active : bool

ConvertibleFactory

makeAuto() : Automobile

capacity : int
active : bool

SedanFactory

makeAuto() : Automobile

capacity : int
active : bool

CoupFactory

FreightCompany

ships

makes

Convertible Sedan Coup

makes makes

shipsships

visits visits

visits

makeAuto() : Automobile

capacity : int
active : bool

Factory

ConvertibleFactory SedanFactory CoupFactory

FreightCompany

ships

Automobile

manufactures

Convertible

Sedan

Coup

visits

??????T1, T2, T3

23

Population

Transformation
Tree

Design Graph

modifies

Individual

Information nodes

Transformation nodes

Extended GP

24

Population

Transformation
Tree

Design Graph

modifies

Individual

Information nodes

Transformation nodes

Extended GP

24

Transformation Tree

Root

TN1 TN2

IN1 IN2 IN1

Convertible
(class)

“DomainNoun”
(string)IAutomobile

(interface)

25

Transformation Tree

Root

TN1 TN2

IN1 IN2 IN1

Convertible
(class)

“DomainNoun”
(string)IAutomobile

(interface)

25

Minitransformations

• Six mini-patterns, or minitransformations:

1. Abstract Access

2. Abstraction

3. Delegation

4. Encapsulate Construction

5. Partial Abstraction

6. Wrapper

26

Abstract Access Transformation

Purpose: to modify a class Context to access another class
Concrete more abstractly through an interface IConcrete.

doX() : int
doY() : int

name : String
Concrete

Context
doX() : int
doY() : int

name : String
Concrete

Context
doX() : int
doY() : int

IConcrete

<<interface>>

implements

doX() : int
doY() : int

IConcrete

<<interface>>

uses

uses

Before After

implements

27

Abstraction Transformation

Purpose: to derive an interface from an existing class Concrete,
enabling other classes to view Concrete more abstractly.

doX() : int
doY() : int

name : String
Concrete

doX() : int
doY() : int

name : String
Concrete

Before After

doX() : int
doY() : int

IConcrete

<<interface>>

implements

28

Delegation Transformation

Purpose: to delegate a subset of the functionality of one class
to another class.

doX() : int
doY() : int

name : String
Concrete

doX() : int
name : String
Concrete

Before After

doY() : int
ConcreteComponent

calls

29

Encapsulate Construction Transformation

Purpose: to localize class instantiations into a dedicated
operation.

CopyShape() : Shape
RandomizeShape() : Shape
TransformShape() : Shape

numShapes : int
ShapeManager

Before After

CopyShape() : Shape
RandomizeShape() : Shape
TransformShape() : Shape
CreateShape() : Shape

numShapes : int
ShapeManager

30

Partial Abstraction Transformation

Purpose: to create an abstract class with the same interface as
an existing class.

doX() : int
doY() : int

name : String
Concrete

name : String
Concrete

Before After

doX() : int
doY() : int

Abstract

31

Wrapper Transformation

Purpose: to wrap a class with another, thus enabling run-time
replacement of the wrapped class.

Before After

Client1

doX() : int
doY() : int

IConcrete
<<interface>>

uses

Client2

doX() : int
doY() : int

name : String
Wrapper

doX() : int
doY() : int

IConcrete
<<interface>>

uses

Client1
uses

Client2
uses

32

Minitransformations in Context

RootNode

PartialAbstraction

Convertible "Automobile"
Convertible

Factory
"Factory"

PartialAbstraction

Transformation Tree

Target Software Design (Elided UML Class Diagram)

Population

In
d

iv
id

u
a
l

Driver Convertible
Convertible
Factory

* 1
producesdrives

Driver Convertible
Convertible

Factory

call

call

instantiate

Design Graph (Elided)

Legend

Transformation Node

Information Node

Class

Individual

33

Solution
Representation

Evolutionary Approach

Fitness
Function

Mutation
Operators

34

Solution
Representation

Evolutionary Approach

Fitness
Function

Mutation
Operators

34

Fitness Function

Two initial terms:

1. Quality of evolved software design

• Metrics

2. Presence of design patterns

• Design pattern detector

35

Metrics

• Hierarchical Metrics for Object-Oriented Design Quality
[Bansiya & Davis]

‣ Known as “QMOOD”

‣ Comprises 11 metrics

‣ Evaluates multiple characteristics: cohesion, coupling, design size, etc.

‣ Amenable to automation

‣ Implemented naturally as a set of graph algorithms

36

Metrics

Graph Metric 0.825

Coupling = 0.5*M1 + 0.25*M2 - 0.5*M3

Overall = 0.15*Cohesion - 0.15*Coupling + ...

37

Design Pattern Detection

• Design patterns have a characteristic signature

‣ Can be detected using a logic or query language (e.g., Prolog or SQL)

‣ Example Prolog query for the Abstract Factory pattern:

38

Fitness Function

F= Metrics -
C1*nodeCountPenalty +
C2*patternReward +
C3*matchingSequencesReward

39

Data Flow
Diagram

Software

Design (XMI)

Convert XMI

to Graph

Create

Population

Evaluate

Population

Design

Patterns

Metrics

Select

Individuals for

Next

Population

Crossover

and Mutation

Select Best

Individual(s)

Design Graph

Individuals

Individuals Annotated

with Fitness Value

Sample of Highly Fit

Individuals

[n Generations Completed]

New

Population

User

Refactoring Solution(s)

40

Implementation

• Input model format: ArgoUML XMI

• GP Framework: Evolutionary Computation for Java (ECJ)

• Graph support: jGraph

• Detection of Design Patterns: jLog and HSQLDB

41

Validation

5 experiments

4 strategies for parameter tuning

1 large case study

42

Parameter Tuning

1. Plain vanilla

2. Constraining the number of transformation nodes

3. Rewarding design pattern presence

4. Rewarding known sequences of transformation nodes

43

Setup

• Parameters

‣ 100 individuals

‣ 100 generations

‣ Tournament selection with tournament size = 7

‣ 90% crossover+mutation; 10% reproduction

• Experiments I-IV

‣ 290 software designs

‣ 5 trials per design, each with a unique random seed

44

Experiment I

• Purpose: to establish a baseline.

• No rewards or penalties; only metrics are considered

• Fitness function:

‣ F = Metrics + 0.0*nodeCountPenalty 0.0*patternReward +
0.0*matchingSequenceReward

• Hypothesis: at least one new design pattern instance will
evolve in each of the 290 models.

• Result: hypothesis validated.

45

Experiment I

of
 D

es
ig

n
P

at
te

rn
 In

st
an

ce
s

Mean # of transformation nodes: 5.94
New design pattern instances per model: 10.7

0

750

1500

2250

3000

Abstract Factory Adapter Bridge Composite Decorator Prototype Proxy

71

2758

66247

176

1

46

Experiment II

• Purpose: to penalize large numbers of transformations

• New term in fitness function: nodeCountPenalty

‣ We vary the coefficient on this term: 0.0025, 0.025, 0.25, 0.5

• Fitness function:

‣ F = Metrics + X*nodeCountPenalty + 0.0*patternReward +
0.0*matchingSequencesReward

• Hypothesis: a larger coefficient will reduce the number of
transformations in the average individual

• Result: hypothesis validated.

47

Experiment II

nodeCountPenalty Coefficient

Tr
an

sf
or

m
at

io
n

no
d

es
 p

er
 in

d
iv

id
ua

l (
m

ea
n)

0

2.5

5.0

7.5

10.0

Coeff. = 0.0 Coeff. = 0.0025 Coeff. = 0.025 Coeff. = 0.25

48

Experiment II

of
 D

es
ig

n
P

at
te

rn
 In

st
an

ce
s

0

750

1500

2250

3000

Abstract Factory Adapter Bridge Composite Decorator Prototype Proxy

134
198

36389
73

1845

36105

166

4

133

2681

20459

239

1
71

2758

66247

176

1

Coeff. = 0.0 Coeff. = 0.0025 Coeff. = 0.025 Coeff. = 0.25

49

Experiment III

• Purpose: to reward creation of design pattern instances

• New term in fitness function: patternReward

‣ We vary the coefficient on this term: 0.025, 0.25, 0.5, 1.0, 2.0

• Fitness function:

‣ F = Metrics + 0.025*nodeCountPenalty + X*patternReward +
0.0*matchingSequencesReward

• Hypothesis: a larger coefficient will lead to a larger
number of design pattern instances on average.

• Result: hypothesis validated.

50

Experiment III

of
 D

es
ig

n
P

at
te

rn
 In

st
an

ce
s

0

1024

2048

3072

4096

Abstract Factory Adapter Bridge Composite Decorator Prototype Proxy

Coeff. = 0.0 Coeff. = 0.025 Coeff. = 0.25 Coeff. = 0.5 Coeff. = 1.0 Coeff. = 2.0

51

Experiment IV

• Purpose: to reward specific sequences of transformations

• New term in fitness function: matchingSequencesReward

‣ We vary the coefficient on this term: 0.025, 0.25, 0.5, 1.0, 2.0

• Fitness function:

‣ F = Metrics + 0.025*nodeCountPenalty + 1.0*patternReward +
X*matchingSequencesReward

• Hypothesis: a larger coefficient will lead to a larger
number of design pattern instances on average.

• Result: hypothesis validated.

52

Experiment IV

of
 D

es
ig

n
P

at
te

rn
 In

st
an

ce
s

0

1075

2150

3225

4300

Abstract Factory Adapter Bridge Composite Decorator Prototype Proxy

Coeff. = 0.0 Coeff. = 0.125 Coeff. = 0.25 Coeff. = 0.5 Coeff. = 1.0 Coeff. = 2.0

53

Experiment V

• Purpose: to test the approach on a large design.

• Parameters

‣ 25 generations

• Fitness function:

‣ F = Metrics + 0.025*nodeSizePenalty + 1.0*patternReward +
0.5*matchingSequencesReward

• Hypothesis: at least one instance of each supported
design pattern type will evolve during the run.

• Result: FIXME.

54

Experiment V

• ReMoDD case study

0

20

40

60

80

Abstract Factory Adapter Bridge Composite Decorator Prototype Proxy

77

9

24

Experiment V: ReMoDD Case Study

of

 D
es

ig
n

P
at

te
rn

 In
st

an
ce

s

55

Discussion

• Pattern complexity affects instance frequency

• Trends are not always monotonic

• Trials with no DP instances had higher quality than other
trials for the same model

• In experiment IV, average design quality increased by 2.6

56

Conclusions

• EC can be used to support automated design refactoring

• Validated on large body of designs.

‣ 290 models

‣ real-world case study

‣ exploration of several rewards and penalties

• Impact:

‣ design assistance tools

‣ step-by-step process for automated refactoring

57

Future Work

• Consider fitness for purpose of specific metrics and design
patterns

• Explore synergy between metrics and DPs

• Look for other metric suites

58

Questions / Comments

59

References
[OCinneide2001] M. Ó Cinnéide. Automated Application of Design Patterns: A Refactoring Approach. PhD thesis, University of Dublin, Trinity College, 2001.

[OKeeffe2008] M. O’Keeffe and M. Ó Cinnéide. Search-based refactoring: an empirical study. Journal of Software Maintenance and Evolution: Research and Practice, 20(5), 2008.

[Prechelt2001] L. Prechelt, B. Unger, W.F. Tichy, P. Brossler, and L.G. Votta. A controlled experiment in maintenance comparing design patterns to simpler solutions. IEEE Transactions
on Software Engineering, pages 1134–1144, 2001.

[Seng2006] O. Seng, J. Stammel, and D. Burkhart. Search-based determination of refactorings for improving the class structure of ob ject-oriented systems. In Proceedings of the 8th
annual conference on Genetic and evolutionary computation, pages 1909–1916. ACM New York, NY, USA, 2006.

60

Acknowledgements

• Funding support from

‣ Ford

‣ QFC

‣ NSF

61

QMOOD
Metrics

Bansiya & Davis

62

Evolved Design Fragment

63

Sample AST

64

